LARGE TIME BEHAVIOR OF NUMERICAL SOLUTIONS OF SCALAR CONSERVATION LAWS

2006 ◽  
Vol 03 (04) ◽  
pp. 631-648
Author(s):  
FRÉDÉRIC LAGOUTIÈRE

We study the large time behavior of entropic approximate solutions to one-dimensional, hyperbolic conservation laws with periodic initial data. Under mild assumptions on the numerical scheme, we prove the asymptotic convergence of the discrete solutions to a time- and space-periodic solution.

2009 ◽  
Vol 06 (02) ◽  
pp. 371-387
Author(s):  
NAOKI TSUGE

We consider the large time behavior of solutions to isentropic gas dynamics with spherical symmetry. In the present paper, we show the decay of the pressure in particular. To do this, we investigate approximate solutions constructed by a difference scheme.


2019 ◽  
Vol 16 (03) ◽  
pp. 519-593
Author(s):  
L. Galimberti ◽  
K. H. Karlsen

We investigate a class of scalar conservation laws on manifolds driven by multiplicative Gaussian (Itô) noise. The Cauchy problem defined on a Riemanian manifold is shown to be well-posed. We prove existence of generalized kinetic solutions using the vanishing viscosity method. A rigidity result àla Perthame is derived, which implies that generalized solutions are kinetic solutions and that kinetic solutions are uniquely determined by their initial data ([Formula: see text] contraction principle). Deprived of noise, the equations we consider coincide with those analyzed by Ben-Artzi and LeFloch [Well-posedness theory for geometry-compatible hyperbolic conservation laws on manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 24(6) (2007) 989–1008], who worked with Kružkov–DiPerna solutions. In the Euclidian case, the stochastic equations agree with those examined by Debussche and Vovelle [Scalar conservation laws with stochastic forcing, J. Funct. Anal. 259(4) (2010) 1014–1042].


2016 ◽  
Vol 54 (5) ◽  
pp. 2775-2798 ◽  
Author(s):  
Sofia Lindqvist ◽  
Peder Aursand ◽  
Tore Flåtten ◽  
Anders Aase Solberg

Sign in / Sign up

Export Citation Format

Share Document