Breaking symmetry in focusing nonlinear Klein-Gordon equations with potential

2018 ◽  
Vol 15 (04) ◽  
pp. 755-788
Author(s):  
Vladimir Georgiev ◽  
Sandra Lucente

We study the dynamics for the focusing nonlinear Klein–Gordon equation, [Formula: see text] with positive radial potential [Formula: see text] and initial data in the energy space. Under suitable assumption on the potential, we establish the existence and uniqueness of the ground state solution. This enables us to define a threshold size for the initial data that separates global existence and blow-up. An appropriate Gagliardo–Nirenberg inequality gives a critical exponent depending on [Formula: see text]. For subcritical exponent and subcritical energy global existence vs blow-up conditions are determined by a comparison between the nonlinear term of the energy solution and the nonlinear term of the ground state energy. For subcritical exponents and critical energy some solutions blow-up, other solutions exist for all time due to the decomposition of the energy space of the initial data into two complementary domains.

2008 ◽  
Vol 50 (3) ◽  
pp. 467-481 ◽  
Author(s):  
ZAIHUI GAN ◽  
JIAN ZHANG

AbstractIn this paper, we put forward a cross-constrained variational method to study the non-linear Klein–Gordon equations with an inverse square potential in three space dimensions. By constructing a type of cross-constrained variational problem and establishing so-called cross-invariant manifolds of the evolution flow, we establish some new types of invariant sets for the equation and derive a sharp threshold of blowup and global existence for its solution. Finally, we give an answer to the question how small the initial data are for the global solution to exist.


Author(s):  
Xue Xu ◽  
Zhong Huang

result shows that the blow-up is equivalent to the blow-up of the $L^r-$norms of the solutions for $r$ exceeding some critical value $r_c.$ Under very loose conditions we give the estimation of $r_c,$ relying on a variant of Gagliardo-Nirenberg inequality, and a kind of bootstrap method which is very similar to the Alikakos-Moser iteration procedure.


Author(s):  
Norman Noguera ◽  
Ademir Pastor

In this work, we study a system of Schrödinger equations involving nonlinearities with quadratic growth. We establish sharp criterion concerned with the dichotomy global existence versus blow-up in finite time. Such a criterion is given in terms of the ground state solutions associated with the corresponding elliptic system, which in turn are obtained by applying variational methods. By using the concentration-compactness method we also investigate the nonlinear stability/instability of the ground states.


2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Wen-Yi Huang ◽  
Wen-Li Chen

This paper is concerned with the nonlinear Klein-Gordon equation with damping term and nonnegative potentials. We introduce a family of potential wells and discuss the invariant sets and vacuum isolating behavior of solutions. Using the potential well argument, we obtain a new existence theorem of global solutions and a blow-up result for solutions in finite time.


Author(s):  
Li Wang ◽  
Tao Han ◽  
Kun Cheng ◽  
Jixiu Wang

AbstractIn this paper, we study the existence of ground state solutions for the following fractional Kirchhoff–Schrödinger–Poisson systems with general nonlinearities:$$\left\{\begin{array}{ll}\left(a+b{\left[u\right]}_{s}^{2}\right)\,{\left(-{\Delta}\right)}^{s}u+u+\phi \left(x\right)u=\left({\vert x\vert }^{-\mu }\ast F\left(u\right)\right)f\left(u\right)\hfill & \mathrm{in}\text{\ }{\mathrm{&#x211d;}}^{3}\,\text{,}\hfill \\ {\left(-{\Delta}\right)}^{t}\phi \left(x\right)={u}^{2}\hfill & \mathrm{in}\text{\ }{\mathrm{&#x211d;}}^{3}\,\text{,}\hfill \end{array}\right.$$where$${\left[u\right]}_{s}^{2}={\int }_{{\mathrm{&#x211d;}}^{3}}{\vert {\left(-{\Delta}\right)}^{\frac{s}{2}}u\vert }^{2}\,\mathrm{d}x={\iint }_{{\mathrm{&#x211d;}}^{3}{\times}{\mathrm{&#x211d;}}^{3}}\frac{{\vert u\left(x\right)-u\left(y\right)\vert }^{2}}{{\vert x-y\vert }^{3+2s}}\,\mathrm{d}x\mathrm{d}y\,\text{,}$$$s,t\in \left(0,1\right)$ with $2t+4s{ >}3,0{< }\mu {< }3-2t,$$f:{\mathrm{&#x211d;}}^{3}{\times}\mathrm{&#x211d;}\to \mathrm{&#x211d;}$ satisfies a Carathéodory condition and (−Δ)s is the fractional Laplace operator. There are two novelties of the present paper. First, the nonlocal term in the equation sets an obstacle that the bounded Cerami sequences could not converge. Second, the nonlinear term f does not satisfy the Ambrosetti–Rabinowitz growth condition and monotony assumption. Thus, the Nehari manifold method does not work anymore in our setting. In order to overcome these difficulties, we use the Pohozǎev type manifold to obtain the existence of ground state solution of Pohozǎev type for the above system.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 779 ◽  
Author(s):  
Jianqing Chen ◽  
Qian Zhang

We study the following quasilinear Schrödinger equation involving critical exponent - Δ u + V ( x ) u - Δ ( u 2 ) u = A ( x ) | u | p - 1 u + λ B ( x ) u 3 N + 2 N - 2 , u ( x ) > 0 for x ∈ R N and u ( x ) → 0 as | x | → ∞ . By using a monotonicity trick and global compactness lemma, we prove the existence of positive ground state solutions of Pohožaev type. The nonlinear term | u | p - 1 u for the well-studied case p ∈ [ 3 , 3 N + 2 N - 2 ) , and the less-studied case p ∈ [ 2 , 3 ) , and for the latter case few existence results are available in the literature. Our results generalize partial previous works.


2008 ◽  
Vol 244 (11) ◽  
pp. 2693-2740 ◽  
Author(s):  
J. Emile Rakotoson ◽  
J. Michel Rakotoson ◽  
Cédric Verbeke

Sign in / Sign up

Export Citation Format

Share Document