The Largest Lengths of Conjugacy Classes of Finite Groups

2005 ◽  
Vol 12 (03) ◽  
pp. 531-534
Author(s):  
Liguo He ◽  
Guohua Qian

Let bcl (G) denote the largest conjugacy class length of a finite group G. In this note, we prove that if bcl (G)<p2 for a prime p, then |G:Op(G)|p≤p.

2018 ◽  
Vol 97 (3) ◽  
pp. 406-411 ◽  
Author(s):  
YONG YANG ◽  
GUOHUA QIAN

Let $G$ be a finite group. Let $\operatorname{cl}(G)$ be the set of conjugacy classes of $G$ and let $\operatorname{ecl}_{p}(G)$ be the largest integer such that $p^{\operatorname{ecl}_{p}(G)}$ divides $|C|$ for some $C\in \operatorname{cl}(G)$. We prove the following results. If $\operatorname{ecl}_{p}(G)=1$, then $|G:F(G)|_{p}\leq p^{4}$ if $p\geq 3$. Moreover, if $G$ is solvable, then $|G:F(G)|_{p}\leq p^{2}$.


Author(s):  
Sajjad M. Robati ◽  
M. R. Darafsheh

Let [Formula: see text] be a finite group. We say that a conjugacy class of [Formula: see text] in [Formula: see text] is vanishing if there exists some irreducible character [Formula: see text] of [Formula: see text] such that [Formula: see text]. In this paper, we show that finite groups with at most six vanishing conjugacy classes are solvable or almost simple groups.


2019 ◽  
Vol 22 (5) ◽  
pp. 933-940
Author(s):  
Jinbao Li ◽  
Yong Yang

Abstract Let G be a finite group and p a prime. Let {\operatorname{cl}(G)} be the set of conjugacy classes of G, and let {\operatorname{ecl}_{p}(G)} be the largest integer such that {p^{\operatorname{ecl}_{p}(G)}} divides {|C|} for some {C\in\operatorname{cl}(G)} . We show that if {p\geq 3} and {\operatorname{ecl}_{p}(G)=1} , then {\lvert G\mskip 1.0mu \mathord{:}\mskip 1.0mu O_{p}(G)\rvert_{p}\leq p^{3}} . This improves the main result of Y. Yang and G. Qian, On p-parts of conjugacy class sizes of finite groups, Bull. Aust. Math. Soc. 97 2018, 3, 406–411.


Author(s):  
SH. RAHIMI ◽  
Z. AKHLAGHI

Abstract Given a finite group G with a normal subgroup N, the simple graph $\Gamma _{\textit {G}}( \textit {N} )$ is a graph whose vertices are of the form $|x^G|$ , where $x\in {N\setminus {Z(G)}}$ and $x^G$ is the G-conjugacy class of N containing the element x. Two vertices $|x^G|$ and $|y^G|$ are adjacent if they are not coprime. We prove that, if $\Gamma _G(N)$ is a connected incomplete regular graph, then $N= P \times {A}$ where P is a p-group, for some prime p, $A\leq {Z(G)}$ and $\textbf {Z}(N)\not = N\cap \textbf {Z}(G)$ .


1991 ◽  
Vol 43 (4) ◽  
pp. 792-813 ◽  
Author(s):  
G. O. Michler ◽  
J. B. Olsson

In his fundamental paper [1] J. L. Alperin introduced the idea of a weight in modular representation theory of finite groups G. Let p be a prime. A p-subgroup R is called a radical subgroup of G if R = Op(NG(R)). An irreducible character φ of NG(R) is called a weight character if φ is trivial on R and belongs to a p-block of defect zero of NG(R)/R. The G-conjugacy class of the pair (R, φ) is a weight of G. Let b be the p-block of NG(R) containing φ, and let B be p-block of G. A weight (R, φ) is a B-weight for the block B of G if B = bG, which means that B and b correspond under the Brauer homomorphism. Alperin's conjecture on weights asserts that the number l*(B) of B-weights of a p-block B of a finite group G equals the number l(B) of modular characters of B.


2004 ◽  
Vol 69 (2) ◽  
pp. 317-325 ◽  
Author(s):  
Antonio Beltrán ◽  
María José Felipe

Let G be a finite group and π an arbitrary set of primes. We investigate the structure of G when the lengths of the conjugacy classes of its π-elements are prime powers. Under this condition, we show that such lengths are either powers of just one prime or exactly {1,qa, rb}, with q and r two distinct primes lying in π and a, b > 0. In the first case, we obtain certain properties of the normal structure of G, and in the second one, we provide a characterisation of the structure of G.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2060
Author(s):  
Siqiang Yang ◽  
Xianhua Li

Let G be a finite group. In this paper, we study how certain arithmetical conditions on the conjugacy class lengths of real elements of G influence the structure of G. In particular, a new type of prime graph is introduced and studied. We obtain a series of theorems which generalize some existed results.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350100 ◽  
Author(s):  
GUOHUA QIAN ◽  
YANMING WANG

Let p be a fixed prime, G a finite group and P a Sylow p-subgroup of G. The main results of this paper are as follows: (1) If gcd (p-1, |G|) = 1 and p2 does not divide |xG| for any p′-element x of prime power order, then G is a solvable p-nilpotent group and a Sylow p-subgroup of G/Op(G) is elementary abelian. (2) Suppose that G is p-solvable. If pp-1 does not divide |xG| for any element x of prime power order, then the p-length of G is at most one. (3) Suppose that G is p-solvable. If pp-1 does not divide χ(1) for any χ ∈ Irr (G), then both the p-length and p′-length of G are at most 2.


2016 ◽  
Vol 15 (03) ◽  
pp. 1650057 ◽  
Author(s):  
Wei Meng ◽  
Jiakuan Lu ◽  
Li Ma ◽  
Wanqing Ma

For a finite group [Formula: see text], the symbol [Formula: see text] denotes the set of the prime divisors of [Formula: see text] denotes the number of conjugacy classes of maximal subgroups of [Formula: see text]. Let [Formula: see text] denote the number of conjugacy classes of non-abelian subgroups of [Formula: see text] and [Formula: see text] denote the number of conjugacy classes of all non-normal non-abelian subgroups of [Formula: see text]. In this paper, we consider the finite groups with [Formula: see text] or [Formula: see text]. We show these groups are solvable.


2012 ◽  
Vol 153 (2) ◽  
pp. 281-318 ◽  
Author(s):  
STEPHEN P. HUMPHRIES ◽  
EMMA L. RODE

AbstractFor a finite group G we study certain rings (k)G called k-S-rings, one for each k ≥ 1, where (1)G is the centraliser ring Z(ℂG) of G. These rings have the property that (k+1)G determines (k)G for all k ≥ 1. We study the relationship of (2)G with the weak Cayley table of G. We show that (2)G and the weak Cayley table together determine the sizes of the derived factors of G (noting that a result of Mattarei shows that (1)G = Z(ℂG) does not). We also show that (4)G determines G for any group G with finite conjugacy classes, thus giving an answer to a question of Brauer. We give a criteria for two groups to have the same 2-S-ring and a result guaranteeing that two groups have the same weak Cayley table. Using these results we find a pair of groups of order 512 that have the same weak Cayley table, are a Brauer pair, and have the same 2-S-ring.


Sign in / Sign up

Export Citation Format

Share Document