The Minimal Free Resolution of a Fat Star-Configuration in ℙn

2014 ◽  
Vol 21 (01) ◽  
pp. 157-166 ◽  
Author(s):  
Jeaman Ahn ◽  
Yong Su Shin

We find the minimal free resolution of a fat star-configuration 𝕏 in ℙn of type (r,s,t) defined by general forms of degrees d1, …, dr, and show that a fat linear star-configuration 𝕏 in ℙ2 never has generic Hilbert function if (s,t) ≠ (1,1) or (2,2). These two results generalize the interesting results of [2].

2004 ◽  
Vol 56 (4) ◽  
pp. 716-741 ◽  
Author(s):  
Elena Guardo ◽  
Adam Van Tuyl

AbstractWe study the Hilbert functions of fat points in ℙ1× ℙ1. IfZ⊆ ℙ1× ℙ1is an arbitrary fat point scheme, then it can be shown that for everyiandjthe values of the Hilbert functionHZ(l,j) andHZ(i,l) eventually become constant forl≫ 0. We show how to determine these eventual values by using only the multiplicities of the points, and the relative positions of the points in ℙ1× ℙ1. This enables us to compute all but a finite number values ofHZwithout using the coordinates of points. We also characterize the ACM fat point schemes using our description of the eventual behaviour. In fact, in the case thatZ⊆ ℙ1× ℙ1is ACM, then the entire Hilbert function and its minimal free resolution depend solely on knowing the eventual values of the Hilbert function.


Author(s):  
Hassan Haghighi ◽  
Mohammad Mosakhani

The purpose of this note is to generalize a result of [M. Dumnicki, T. Szemberg and H. Tutaj-Gasińska, Symbolic powers of planar point configurations II, J. Pure Appl. Alg. 220 (2016) 2001–2016] to higher-dimensional projective spaces and classify all configurations of [Formula: see text]-planes [Formula: see text] in [Formula: see text] with the Waldschmidt constants less than two. We also determine some numerical and algebraic invariants of the defining ideals [Formula: see text] of these classes of configurations, i.e. the resurgence, the minimal free resolution and the regularity of [Formula: see text], as well as the Hilbert function of [Formula: see text].


1998 ◽  
Vol 26 (12) ◽  
pp. 4285-4307 ◽  
Author(s):  
Anthony V. Geramita ◽  
Hyoung June Ko ◽  
Yong Su Shin

2007 ◽  
Vol 14 (04) ◽  
pp. 649-660
Author(s):  
Yong Su Shin

We find a necessary and sufficient condition for the Hilbert function to support the ith linear syzygy using type vectors and also construct an Artinian level algebra whose minimal free resolution supports the nth linear syzygy using both a mapping cone construction and coordinate points in ℙn.


2006 ◽  
Vol 13 (3) ◽  
pp. 411-417
Author(s):  
Edoardo Ballico

Abstract Let 𝑋 be a smooth and connected projective curve. Assume the existence of spanned 𝐿 ∈ Pic𝑎(𝑋), 𝑅 ∈ Pic𝑏(𝑋) such that ℎ0(𝑋, 𝐿) = ℎ0(𝑋, 𝑅) = 2 and the induced map ϕ 𝐿,𝑅 : 𝑋 → 𝐏1 × 𝐏1 is birational onto its image. Here we study the following question. What can be said about the morphisms β : 𝑋 → 𝐏𝑅 induced by a complete linear system |𝐿⊗𝑢⊗𝑅⊗𝑣| for some positive 𝑢, 𝑣? We study the homogeneous ideal and the minimal free resolution of the curve β(𝑋).


2003 ◽  
Vol 10 (1) ◽  
pp. 37-43
Author(s):  
E. Ballico

Abstract We consider the vanishing problem for higher cohomology groups on certain infinite-dimensional complex spaces: good branched coverings of suitable projective spaces and subvarieties with a finite free resolution in a projective space P(V ) (e.g. complete intersections or cones over finitedimensional projective spaces). In the former case we obtain the vanishing result for H 1. In the latter case the corresponding results are only conditional for sheaf cohomology because we do not have the corresponding vanishing theorem for P(V ).


Author(s):  
K. W. Gruenberg

AbstractFor a ZG-lattice A, the nth partial free Euler characteristic εn(A) is defined as the infimum of all where F* varies over all free resolutions of A. It is shown that there exists a stably free resolution E* of A which realises εn(A) for all n≥0 and that the function n → εn(A) is ultimately polynomial no residue classes. The existence of E* is established with the help of new invariants σn(A) of A. These are elements in certain image groups of the projective class group of ZG. When ZG allows cancellation, E* is a minimal free resolution and is essentially unique. When A is periodic, E* is ultimately periodic of period a multiple of the projective period of A.


1990 ◽  
Vol 118 ◽  
pp. 203-216 ◽  
Author(s):  
Mitsuyasu Hashimoto

Let R be a Noetherian commutative ring with, unit element, and Xij be variables with 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let S = R[xij] be the polynomial ring over R, and It be the ideal in S, generated by the t × t minors of the generic matrix (xij) ∈ Mm, n(S). For many years there has been considerable interest in finding a minimal free resolution of S/It, over arbitrary base ring R. If we have a minimal free resolution P. over R = Z, the ring of integers, then R′ ⊗z P. is a resolution of S/It over the base ring R′.


Sign in / Sign up

Export Citation Format

Share Document