scholarly journals On Generalized Non-commuting Graph of a Finite Ring

2018 ◽  
Vol 25 (01) ◽  
pp. 149-160 ◽  
Author(s):  
Jutirekha Dutta ◽  
Dhiren K. Basnet ◽  
Rajat K. Nath

Let S and K be two subrings of a finite ring R. Then the generalized non-commuting graph of subrings S, K of R, denoted by ГS,K, is a simple graph whose vertex set is [Formula: see text], and where two distinct vertices a, b are adjacent if and only if [Formula: see text] or [Formula: see text] and [Formula: see text]. We determine the diameter, girth and some dominating sets for ГS,K. Some connections between ГS,K and Pr(S, K) are also obtained. Further, ℤ-isoclinism between two pairs of finite rings is defined, and we show that the generalized non-commuting graphs of two ℤ-isoclinic pairs are isomorphic under some conditions.

2011 ◽  
Vol 10 (03) ◽  
pp. 521-527 ◽  
Author(s):  
G. R. OMIDI ◽  
E. VATANDOOST

Let R be a non-commutative ring. The commuting graph of R denoted by Γ(R), is a graph with vertex set R\Z(R) and two vertices a and b are adjacent if ab = ba. It has been shown that the diameter of Γ(R)c is less than 3. For a finite ring R we show that the diameter of Γ(R)c is one if and only if R is the non-commutative ring on 4 elements. Also we characterize all rings where the complements of their commuting graphs are planar. Moreover, we identify the commuting graphs of rings of order pi for i = 2, 3 and prime number p.


2010 ◽  
Vol 17 (04) ◽  
pp. 611-620 ◽  
Author(s):  
A. Abdollahi ◽  
A. Azad ◽  
A. Mohammadi Hassanabadi ◽  
M. Zarrin

Let G be a non-abelian group. The non-commuting graph [Formula: see text] of G is defined as the graph whose vertex set is the non-central elements of G and two vertices are joint if and only if they do not commute. In a finite simple graph Γ, the maximum size of complete subgraphs of Γ is called the clique number of Γ and denoted by ω(Γ). In this paper, we characterize all non-solvable groups G with [Formula: see text], where 57 is the clique number of the non-commuting graph of the projective special linear group PSL (2,7). We also determine [Formula: see text] for all finite minimal simple groups G.


2011 ◽  
Vol 61 (6) ◽  
Author(s):  
Lutz Volkmann

AbstractLet k be a positive integer, and let G be a simple graph with vertex set V (G). A vertex of a graph G dominates itself and all vertices adjacent to it. A subset S ⊆ V (G) is a k-tuple dominating set of G if each vertex of V (G) is dominated by at least k vertices in S. The k-tuple domatic number of G is the largest number of sets in a partition of V (G) into k-tuple dominating sets.In this paper, we present a lower bound on the k-tuple domatic number, and we establish Nordhaus-Gaddum inequalities. Some of our results extends those for the classical domatic number.


2019 ◽  
Vol 12 (05) ◽  
pp. 1950081
Author(s):  
M. Jahandideh ◽  
R. Modabernia ◽  
S. Shokrolahi

Let [Formula: see text] be a non-abelian finite group and [Formula: see text] be the center of [Formula: see text]. The non-commuting graph, [Formula: see text], associated to [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices [Formula: see text] are adjacent if and only if [Formula: see text]. We conjecture that if [Formula: see text] is an almost simple group and [Formula: see text] is a non-abelian finite group such that [Formula: see text], then [Formula: see text]. Among other results, we prove that if [Formula: see text] is a certain almost simple group and [Formula: see text] is a non-abelian group with isomorphic non-commuting graphs, then [Formula: see text].


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
M. Jahandideh ◽  
M. R. Darafsheh ◽  
N. H. Sarmin ◽  
S. M. S. Omer

Abstract - Let G􀡳 be a non- abelian finite group. The non-commuting graph ,􀪡is defined as a graph with a vertex set􀡳 − G-Z(G)􀢆in which two vertices x􀢞 and y􀢟 are joined if and only if xy􀢞􀢟 ≠ yx􀢟􀢞.  In this paper, we invest some results on the number of edges set , the degree of avertex of non-commuting graph and the number of conjugacy classes of a finite group. In order that if 􀪡􀡳non-commuting graph of H ≅ non - commuting graph of G􀪡􀡴,H 􀡴 is afinite group, then |G􀡳| = |H􀡴| .


Author(s):  
Qun Liu ◽  
Jiabao Liu

Let G[F,Vk, Huv] be the graph with k pockets, where F is a simple graph of order n ≥ 1,Vk= {v1,v2,··· ,vk} is a subset of the vertex set of F and Hvis a simple graph of order m ≥ 2,v is a specified vertex of Hv. Also let G[F,Ek, Huv] be the graph with k edge pockets, where F is a simple graph of order n ≥ 2, Ek= {e1,e2,···ek} is a subset of the edge set of F and Huvis a simple graph of order m ≥ 3, uv is a specified edge of Huvsuch that Huv− u is isomorphic to Huv− v. In this paper, we derive closed-form formulas for resistance distance and Kirchhoff index of G[F,Vk, Hv] and G[F,Ek, Huv] in terms of the resistance distance and Kirchhoff index F, Hv and F, Huv, respectively.


10.37236/9802 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Peter Cameron ◽  
Saul Freedman ◽  
Colva Roney-Dougal

For a nilpotent group $G$, let $\Xi(G)$ be the difference between the complement of the generating graph of $G$ and the commuting graph of $G$, with vertices corresponding to central elements of $G$ removed. That is, $\Xi(G)$ has vertex set $G \setminus Z(G)$, with two vertices adjacent if and only if they do not commute and do not generate $G$. Additionally, let $\Xi^+(G)$ be the subgraph of $\Xi(G)$ induced by its non-isolated vertices. We show that if $\Xi(G)$ has an edge, then $\Xi^+(G)$ is connected with diameter $2$ or $3$, with $\Xi(G) = \Xi^+(G)$ in the diameter $3$ case. In the infinite case, our results apply more generally, to any group with every maximal subgroup normal. When $G$ is finite, we explore the relationship between the structures of $G$ and $\Xi(G)$ in more detail.


Author(s):  
Kijung Kim

Let $G$ be a finite simple graph with vertex set $V(G)$ and edge set $E(G)$. A function $f : V(G) \rightarrow \mathcal{P}(\{1, 2, \dotsc, k\})$ is a \textit{$k$-rainbow dominating function} on $G$ if for each vertex $v \in V(G)$ for which $f(v)= \emptyset$, it holds that $\bigcup_{u \in N(v)}f(u) = \{1, 2, \dotsc, k\}$. The weight of a $k$-rainbow dominating function is the value $\sum_{v \in V(G)}|f(v)|$. The \textit{$k$-rainbow domination number} $\gamma_{rk}(G)$ is the minimum weight of a $k$-rainbow dominating function on $G$. In this paper, we initiate the study of $k$-rainbow domination numbers in middle graphs. We define the concept of a middle $k$-rainbow dominating function, obtain some bounds related to it and determine the middle $3$-rainbow domination number of some classes of graphs. We also provide upper and lower bounds for the middle $3$-rainbow domination number of trees in terms of the matching number. In addition, we determine the $3$-rainbow domatic number for the middle graph of paths and cycles.


Author(s):  
Mahsa Mirzargar

Let G be a nite group. The power graph P(G) of a group G is the graphwhose vertex set is the group elements and two elements are adjacent if one is a power of the other. The commuting graph \Delta(G) of a group G, is the graph whose vertices are the group elements, two of them joined if they commute. When the vertex set is G-Z(G), this graph is denoted by \Gamma(G). Since the results based on the automorphism group of these kinds of graphs are so sporadic, in this paper, we give a survey of all results on the automorphism group of power graphs and commuting graphs obtained in the literature.


Author(s):  
Nurdin Hinding ◽  
Hye Kyung Kim ◽  
Nurtiti Sunusi ◽  
Riskawati Mise

For a simple graph G with a vertex set V G and an edge set E G , a labeling f : V G ∪ ​ E G ⟶ 1,2 , ⋯ , k is called a vertex irregular total k − labeling of G if for any two different vertices x and y in V G we have w t x ≠ w t y where w t x = f x + ∑ u ∈ V G f x u . The smallest positive integer k such that G has a vertex irregular total k − labeling is called the total vertex irregularity strength of G , denoted by tvs G . The lower bound of tvs G for any graph G have been found by Baca et. al. In this paper, we determined the exact value of the total vertex irregularity strength of the hexagonal cluster graph on n cluster for n ≥ 2 . Moreover, we show that the total vertex irregularity strength of the hexagonal cluster graph on n cluster is 3 n 2 + 1 / 2 .


Sign in / Sign up

Export Citation Format

Share Document