On Existence of Primitive Normal Elements of Cubic Form over Finite Fields

2022 ◽  
Vol 29 (01) ◽  
pp. 151-166
Author(s):  
Himangshu Hazarika ◽  
Dhiren Kumar Basnet

For a prime [Formula: see text]and a positive integer[Formula: see text], let [Formula: see text] and [Formula: see text] be the extension field of [Formula: see text]. We derive a sufficient condition for the existence of a primitive element [Formula: see text] in[Formula: see text] such that [Formula: see text] is also a primitive element of [Formula: see text], a sufficient condition for the existence of a primitive normal element [Formula: see text] in [Formula: see text] over [Formula: see text] such that [Formula: see text] is a primitive element of [Formula: see text], and a sufficient condition for the existence of a primitive normal element [Formula: see text] in [Formula: see text] over [Formula: see text] such that [Formula: see text] is also a primitive normal element of [Formula: see text] over [Formula: see text].

Author(s):  
Himangshu Hazarika ◽  
Dhiren Kumar Basnet ◽  
Stephen D. Cohen

For [Formula: see text] ([Formula: see text]), denote by [Formula: see text] the finite field of order [Formula: see text] and for a positive integer [Formula: see text], let [Formula: see text] be its extension field of degree [Formula: see text]. We establish a sufficient condition for existence of a primitive normal element [Formula: see text] such that [Formula: see text] is a primitive element, where [Formula: see text], with [Formula: see text] satisfying [Formula: see text] in [Formula: see text].


2018 ◽  
Vol 11 (02) ◽  
pp. 1850031 ◽  
Author(s):  
Anju ◽  
R. K. Sharma

Let [Formula: see text] be an extension of the field [Formula: see text] of degree [Formula: see text] where [Formula: see text] for some positive integer [Formula: see text] and prime [Formula: see text] In this paper, we establish a sufficient condition for the existence of a primitive element [Formula: see text] such that [Formula: see text] is also primitive as well as a primitive normal element [Formula: see text] of [Formula: see text] over [Formula: see text] such that [Formula: see text] is primitive.


2020 ◽  
Vol 18 (1) ◽  
pp. 873-885
Author(s):  
Gülnaz Boruzanlı Ekinci ◽  
Csilla Bujtás

Abstract Let k be a positive integer and let G be a graph with vertex set V(G) . A subset D\subseteq V(G) is a k -dominating set if every vertex outside D is adjacent to at least k vertices in D . The k -domination number {\gamma }_{k}(G) is the minimum cardinality of a k -dominating set in G . For any graph G , we know that {\gamma }_{k}(G)\ge \gamma (G)+k-2 where \text{Δ}(G)\ge k\ge 2 and this bound is sharp for every k\ge 2 . In this paper, we characterize bipartite graphs satisfying the equality for k\ge 3 and present a necessary and sufficient condition for a bipartite graph to satisfy the equality hereditarily when k=3 . We also prove that the problem of deciding whether a graph satisfies the given equality is NP-hard in general.


2012 ◽  
Vol 55 (2) ◽  
pp. 418-423 ◽  
Author(s):  
Le Anh Vinh

AbstractGiven a positive integern, a finite fieldofqelements (qodd), and a non-degenerate symmetric bilinear formBon, we determine the largest possible cardinality of pairwiseB-orthogonal subsets, that is, for any two vectorsx,y∈ Ε, one hasB(x,y) = 0.


2020 ◽  
Vol 12 (03) ◽  
pp. 2050045
Author(s):  
A. Chellaram Malaravan ◽  
A. Wilson Baskar

The aim of this paper is to determine radius and diameter of graph complements. We provide a necessary and sufficient condition for the complement of a graph to be connected, and determine the components of graph complement. Finally, we completely characterize the class of graphs [Formula: see text] for which the subgraph induced by central (respectively peripheral) vertices of its complement in [Formula: see text] is isomorphic to a complete graph [Formula: see text], for some positive integer [Formula: see text].


2013 ◽  
Vol 23 (01) ◽  
pp. 1350010 ◽  
Author(s):  
XINXING WU ◽  
PEIYONG ZHU

In this paper, chaos generated by a class of nonconstant weighted shift operators is studied. First, we prove that for the weighted shift operator Bμ : Σ(X) → Σ(X) defined by Bμ(x0, x1, …) = (μ(0)x1, μ(1)x2, …), where X is a normed linear space (not necessarily complete), weak mix, transitivity (hypercyclity) and Devaney chaos are all equivalent to separability of X and this property is preserved under iterations. Then we get that [Formula: see text] is distributionally chaotic and Li–Yorke sensitive for each positive integer N. Meanwhile, a sufficient condition ensuring that a point is k-scrambled for all integers k > 0 is obtained. By using these results, a simple example is given to show that Corollary 3.3 in [Fu & You, 2009] does not hold. Besides, it is proved that the constructive proof of Theorem 4.3 in [Fu & You, 2009] is not correct.


2010 ◽  
Vol 81 (3) ◽  
pp. 473-480 ◽  
Author(s):  
SIZHONG ZHOU ◽  
BINGYUAN PU ◽  
YANG XU

AbstractLet G be a graph, and k a positive integer. Let h:E(G)→[0,1] be a function. If ∑ e∋xh(e)=k holds for each x∈V (G), then we call G[Fh] a fractional k-factor of G with indicator function h where Fh={e∈E(G)∣h(e)>0}. In this paper we use neighbourhoods to obtain a new sufficient condition for a graph to have a fractional k-factor. Furthermore, this result is shown to be best possible in some sense.


2015 ◽  
Vol 7 (2) ◽  
pp. 18
Author(s):  
Ali H. Hakami

Let $m$ be a positive integer with $m < p/2$ and $p$ is a prime. Let $\mathbb{F}_q$ be the finite field in $q = p^f$ elements, $Q({\mathbf{x}})$ be a nonsinqular quadratic form over $\mathbb{F}_q$ with $q$ odd, $V$ be the set of points in $\mathbb{F}_q^n$ satisfying the equation $Q({\mathbf{x}}) = 0$ in which the variables are restricted to a box of points of the type\[\mathcal{B}(m) = \left\{ {{\mathbf{x}} \in \mathbb{F}_q^n \left| {x_i  = \sum\limits_{j = 1}^f {x_{ij} \xi _j } ,\;\left| {x_{ij} } \right| < m,\;1 \leqslant i \leqslant n,\;1 \leqslant j \leqslant f} \right.} \right\},\]where $\xi _1 , \ldots ,\xi _f$ is a basis for $\mathbb{F}_q$ over $\mathbb{F}_p$ and $n > 2$ even. Set $\Delta  = \det Q$ such that $\chi \left( {( - 1)^{n/2} \Delta } \right) = 1.$ We shall motivate work of (Cochrane, 1986) to obtain lower bounds on $m,$ size of the box $\mathcal{B},$ so that $\mathcal{B} \cap V$ is nonempty. For this we show that the box $\mathcal{B}(m)$ contains a zero of $Q({\mathbf{x}})$ provided that $m \geqslant p^{1/2}.$ We also show that the box $\mathcal{B}(m)$ contains $n$ linearly independent zeros of $Q({\mathbf{x}})$ provided that $m \geqslant 2^{n/2} p^{1/2} .$


2014 ◽  
Vol 21 (02) ◽  
pp. 317-330 ◽  
Author(s):  
Guixin Deng ◽  
Pingzhi Yuan

Let H be an abelian group written additively and k be a positive integer. Let G(H, k) denote the digraph whose set of vertices is just H, and there exists a directed edge from a vertex a to a vertex b if b = ka. In this paper we give a necessary and sufficient condition for G(H, k1) ≃ G(H, k2). We also discuss the problem when G(H1, k) is isomorphic to G(H2, k) for a given k. Moreover, we give an explicit formula of G(H, k) when H is a p-group and gcd (p, k)=1.


2014 ◽  
Vol 13 (05) ◽  
pp. 1350162 ◽  
Author(s):  
YANGJIANG WEI ◽  
GAOHUA TANG ◽  
JIZHU NAN

For a finite commutative ring R and a positive integer k ≥ 2, we construct an iteration digraph G(R, k) whose vertex set is R and for which there is a directed edge from a ∈ R to b ∈ R if b = ak. In this paper, we investigate the iteration digraphs G(𝔽prCn, k) of 𝔽prCn, the group ring of a cyclic group Cn over a finite field 𝔽pr. We study the cycle structure of G(𝔽prCn, k), and explore the symmetric digraphs. Finally, we obtain necessary and sufficient conditions on 𝔽prCn and k such that G(𝔽prCn, k) is semiregular.


Sign in / Sign up

Export Citation Format

Share Document