scholarly journals An Introduction to Operational Quantum Dynamics

2017 ◽  
Vol 24 (04) ◽  
pp. 1740016 ◽  
Author(s):  
Simon Milz ◽  
Felix A. Pollock ◽  
Kavan Modi

This special volume celebrates the 40th anniversary of the discovery of the Gorini-Kossakowski-Sudarshan-Lindblad master equation, which is widely used in quantum physics and quantum chemistry. The present contribution aims to celebrate a related discovery — also by Sudarshan — that of Quantum Maps (which had their 55th anniversary in the same year). Nowadays, much like the master equation, quantum maps are ubiquitous in physics and chemistry. Their importance in quantum information and related fields cannot be overstated. Here, we motivate quantum maps from a tomographic perspective, and derive their well-known representations. We then dive into the murky world beyond these maps, where recent research has yielded their generalisation to non-Markovian quantum processes.

2021 ◽  
Author(s):  
Gershon Kurizki ◽  
Abraham G. Kofman

The control of open quantum systems and their associated quantum thermodynamic properties is a topic of growing importance in modern quantum physics and quantum chemistry research. This unique and self-contained book presents a unifying perspective of such open quantum systems, first describing the fundamental theory behind these formidably complex systems, before introducing the models and techniques that are employed to control their quantum thermodynamics processes. A detailed discussion of real quantum devices is also covered, including quantum heat engines and quantum refrigerators. The theory of open quantum systems is developed pedagogically, from first principles, and the book is accessible to graduate students and researchers working in atomic physics, quantum information, condensed matter physics, and quantum chemistry.


2000 ◽  
Vol 104 (43) ◽  
pp. 9806-9806 ◽  
Author(s):  
James A. Miller ◽  
Stephen J. Klippenstein ◽  
Struan H. Robertson

MRS Bulletin ◽  
2005 ◽  
Vol 30 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Luiz Davidovich

AbstractThe following article is based on the plenary address by Luiz Davidovich (Federal University of Rio de Janeiro), presented on April 14, 2004, at the 2004 MRS Spring Meeting in San Francisco. The field of quantum information is a discipline that aims to investigate methods for characterizing, transmitting, storing, compressing, and computationally utilizing the information carried by quantum states. It owes its rapid development over the last few years to several factors: the ability, developed in several laboratories, to control and measure simple microscopic systems; the discovery of fast quantum algorithms; and the recognition that Moore's law will soon lead to the single-atom limit of elementary computing gates.Cryptography and quantum computing are among the main applications in the field.They rely on the subtle and fundamental properties of the quantum world: the unavoidable disturbance associated with measurement, the superposition principle, and the nonlocal properties of entangled states. Progress in this area is intimately connected to a deep understanding of quantum physics: recent achievements include the experimental demonstration of teleportation and detailed investigations of the role of the environment in the quantum–classical transition. This article reviews basic concepts and recent developments in the field of quantum information, emphasizing the close ties between fundamental research and possible applications.


2010 ◽  
Vol 22 (06) ◽  
pp. 597-667 ◽  
Author(s):  
THOMAS SCHULTE-HERBRÜGGEN ◽  
STEFFEN J. GLASER ◽  
GUNTHER DIRR ◽  
UWE HELMKE

Many challenges in quantum information and quantum control root in constrained optimization problems on finite-dimensional quantum systems. The constraints often arise from two facts: (i) quantum dynamic state spaces are naturally smooth manifolds (orbits of the respective initial states) rather than being Hilbert spaces; (ii) the dynamics of the respective quantum system may be restricted to a proper subset of the entire state space. Mathematically, either case can be treated by constrained optimization over the reachable set of an underlying control system. Thus, whenever the reachable set takes the form a smooth manifold, Riemannian optimization methods apply. Here, we give a comprehensive account on the foundations of gradient flows on Riemannian manifolds including new applications in quantum information and quantum dynamics. Yet, we do not pursue the problem of designing explicit controls for the underlying control systems. The framework is sufficiently general for setting up gradient flows on (sub)manifolds, Lie (sub)groups, and (reductive) homogeneous spaces. Relevant convergence conditions are discussed, in particular for gradient flows on compact and analytic manifolds. This is meant to serve as foundation for new achievements and further research. Illustrative examples and new applications are given: we extend former results on unitary groups to closed subgroups with tensor-product structure, where the finest product partitioning relates to SU loc (2n) := SU(2) ⊗ ⋯ ⊗ SU(2) — known as (qubit-wise) local unitary operations. Such applications include, e.g., optimizing figures of merit on SU loc (2n) relating to distance measures of pure-state entanglement as well as to best rank-1 approximations of higher-order tensors. In quantum information, our gradient flows provide a numerically favorable alternative to standard tensor-SVD techniques.


2013 ◽  
Vol 35 (8) ◽  
pp. 611-621 ◽  
Author(s):  
Elda Rossi ◽  
Stefano Evangelisti ◽  
Antonio Laganà ◽  
Antonio Monari ◽  
Sergio Rampino ◽  
...  

2005 ◽  
Vol 03 (01) ◽  
pp. 201-205 ◽  
Author(s):  
YASSER OMAR

Particle statistics is a fundamental part of quantum physics, and yet its role and use in the context of quantum information have been poorly explored so far. After briefly introducing particle statistics and the Symmetrization Postulate, we argue that this fundamental aspect of nature can be seen as a resource for quantum information processing and present examples showing how it is possible to do useful and efficient quantum information processing using only the effects of particle statistics.


Sign in / Sign up

Export Citation Format

Share Document