An Uncertain Single-Server Queueing Model

2021 ◽  
pp. 2150001
Author(s):  
Kai Yao

In the queueing theory, the interarrival times between customers and the service times for customers are usually regarded as random variables. This paper considers human uncertainty in a queueing system, and proposes an uncertain queueing model in which the interarrival times and the service times are regarded as uncertain variables. The busyness index is derived analytically which indicates the service efficiency of a queueing system. Besides, the uncertainty distribution of the busy period is obtained.


1969 ◽  
Vol 6 (03) ◽  
pp. 550-564 ◽  
Author(s):  
D. J. Daley

A quantity of particular interest in the study of (road) traffic jams is the total waiting time X of all vehicles involved in a given hold-up (Gaver (1969): see note following (2.3) below and the first paragraph of Section 5). With certain assumptions on the process this random variable X is the same as the sum of waiting times of customers in a busy period of a GI/G/1 queueing system, and it is the object of this paper and its sequel to study the random variable in the queueing theory context.



1969 ◽  
Vol 6 (3) ◽  
pp. 550-564 ◽  
Author(s):  
D. J. Daley

A quantity of particular interest in the study of (road) traffic jams is the total waiting time X of all vehicles involved in a given hold-up (Gaver (1969): see note following (2.3) below and the first paragraph of Section 5). With certain assumptions on the process this random variable X is the same as the sum of waiting times of customers in a busy period of a GI/G/1 queueing system, and it is the object of this paper and its sequel to study the random variable in the queueing theory context.



1987 ◽  
Vol 24 (03) ◽  
pp. 758-767
Author(s):  
D. Fakinos

This paper studies theGI/G/1 queueing system assuming that customers have service times depending on the queue size and also that they are served in accordance with the preemptive-resume last-come–first-served queue discipline. Expressions are given for the limiting distribution of the queue size and the remaining durations of the corresponding services, when the system is considered at arrival epochs, at departure epochs and continuously in time. Also these results are applied to some particular cases of the above queueing system.



1962 ◽  
Vol 2 (4) ◽  
pp. 499-507 ◽  
Author(s):  
G. F. Yeo

SummaryThis paper considers a generalisation of the queueing system M/G/I, where customers arriving at empty and non-empty queues have different service time distributions. The characteristic function (c.f.) of the stationary waiting time distribution and the probability generating function (p.g.f.) of the queue size are obtained. The busy period distribution is found; the results are generalised to an Erlangian inter-arrival distribution; the time-dependent problem is considered, and finally a special case of server absenteeism is discussed.



1974 ◽  
Vol 11 (04) ◽  
pp. 825-828 ◽  
Author(s):  
D. C. McNickle

In this note an identity due to Arjas (1972) is used to express the distribution of the number of departures from a single server queue in which both service and interarrival times may depend on customer type in terms of the busy period and busy cycle processes.



1997 ◽  
Vol 34 (03) ◽  
pp. 800-805 ◽  
Author(s):  
Vyacheslav M. Abramov

This paper consists of two parts. The first part provides a more elementary proof of the asymptotic theorem of the refusals stream for an M/GI/1/n queueing system discussed in Abramov (1991a). The central property of the refusals stream discussed in the second part of this paper is that, if the expectations of interarrival and service time of an M/GI/1/n queueing system are equal to each other, then the expectation of the number of refusals during a busy period is equal to 1. This property is extended for a wide family of single-server queueing systems with refusals including, for example, queueing systems with bounded waiting time.



1989 ◽  
Vol 26 (04) ◽  
pp. 858-865 ◽  
Author(s):  
Douglas P. Wiens

Equations are derived for the distribution of the busy period of the GI/G/2 queue. The equations are analyzed for the M/G/2 queue, assuming that the service times have a density which is an arbitrary linear combination, with respect to both the number of stages and the rate parameter, of Erlang densities. The coefficients may be negative. Special cases and examples are studied.



Pomorstvo ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 205-209
Author(s):  
Svjetlana Hess ◽  
Ana Grbčić

The paper gives an overview of the real system as a multiphase single server queuing problem, which is a rare case in papers dealing with the application of the queueing theory. The methodological and scientific contribution of this paper is primarily in setting up the model of the real problem applying the multiphase queueing theory. The research of service system at Rijeka Airport may allow the airport to be more competitive by increasing service quality. The existing performance measures have been evaluated in order to improve Rijeka Airport queueing system, as a record number of passengers is to be expected in the next few years. Performance indicators have pointed out how the system handles congestion. The research is also focused on defining potential bottlenecks and comparing the results with IATA guidelines in terms of maximum waiting times.



1969 ◽  
Vol 6 (1) ◽  
pp. 154-161 ◽  
Author(s):  
E.G. Enns

In the study of the busy period for a single server queueing system, three variables that have been investigated individually or at most in pairs are:1.The duration of the busy period.2.The number of customers served during the busy period.3.The maximum number of customers in the queue during the busy period.



1971 ◽  
Vol 8 (1) ◽  
pp. 95-109 ◽  
Author(s):  
Sreekantan S. Nair

Avi-Itzhak, Maxwell and Miller (1965) studied a queueing model with a single server serving two service units with alternating priority. Their model explored the possibility of having the alternating priority model treated in this paper with a single server serving alternately between two service units in tandem.Here we study the distribution of busy period, virtual waiting time and queue length and their limiting behavior.



Sign in / Sign up

Export Citation Format

Share Document