Green’s Function and Eshelby’s Tensor Based on Mindlin’s 2nd Gradient Model: An Explicit Study of Cylindrical Inclusion Case

2019 ◽  
Vol 10 (02) ◽  
pp. 1850007
Author(s):  
Abdellatif Selmi

Based on Mindlin’s 2nd gradient model that involves two length-scale parameters, Green’s function, Eshelby tensor and Eshelby-like tensor for an inclusion of arbitrary shape are derived. It is proved that the Eshelby tensor consists of two parts: the classical Eshelby tensor and a gradient part including the length-scale parameters, which enable the interpretation of the size effect. When the strain gradient is not taken into account, the obtained Green’s function and Eshelby tensor reduce to its analogue based on the classical elasticity. For the cylindrical inclusion case, the Eshelby tensor in and outside the inclusion, the volume average of the gradient part and the Eshelby-like tensor are explicitly obtained. Unlike the classical Eshelby tensor, the results show that the components of the new Eshelby tensor vary with the position and the inclusion dimensions. It is demonstrated that the contribution of the gradient part should not be neglected.

2009 ◽  
Vol 77 (2) ◽  
Author(s):  
B. R. Kim ◽  
H. K. Lee

With the help of the I-integrals expressed by Mura (1987, Micromechanics of Defects in Solids, 2nd ed., Martinus Nijhoff, Dordrecht) and the outward unit normal vector introduced by Ju and Sun (1999, “A Novel Formulation for the Exterior-Point Eshelby’s Tensor of an Ellipsoidal Inclusion,” ASME Trans. J. Appl. Mech., 66, pp. 570–574), the closed form solution of the exterior-point Eshelby tensor for an elliptic cylindrical inclusion is derived in this work. The proposed closed form of the Eshelby tensor for an elliptic cylindrical inclusion is more explicit than that given by Mura, which is rough and unfinished. The Eshelby tensor for an elliptic cylindrical inclusion can be reduced to the Eshelby tensor for a circular cylindrical inclusion by letting the aspect ratio of the inclusion α=1. The closed form Eshelby tensor presented in this study can contribute to micromechanics-based analysis of composites with elliptic cylindrical inclusions.


2006 ◽  
Vol 324-325 ◽  
pp. 679-682 ◽  
Author(s):  
Zai Lin Yang ◽  
Dian Kui Liu ◽  
Xiao Lang Lv

Scattering of SH wave by a crack is studied in elastic half space with a removable rigid cylindrical inclusion by Green’s function, complex function and moving coordinate method. In half space, firstly the scattering wave function of removable rigid cylindrical inclusion is constructed; next a suitable Green’s function is solved for present problem, then using crack-division to make a crack. Thus the solution of problem can be obtained. Numerical examples are provided and discussed.


1985 ◽  
Vol 46 (C4) ◽  
pp. C4-321-C4-329 ◽  
Author(s):  
E. Molinari ◽  
G. B. Bachelet ◽  
M. Altarelli

2014 ◽  
Vol 17 (N/A) ◽  
pp. 89-145 ◽  
Author(s):  
Sridhar Sadasivam ◽  
Yuhang Che ◽  
Zhen Huang ◽  
Liang Chen ◽  
Satish Kumar ◽  
...  

2018 ◽  
Vol 12 (5-6) ◽  
pp. 72-80
Author(s):  
A. A. Krylov

In the absence of strong motion records at the future construction sites, different theoretical and semi-empirical approaches are used to estimate the initial seismic vibrations of the soil. If there are records of weak earthquakes on the site and the parameters of the fault that generates the calculated earthquake are known, then the empirical Green’s function can be used. Initially, the empirical Green’s function method in the formulation of Irikura was applied for main shock record modelling using its aftershocks under the following conditions: the magnitude of the weak event is only 1–2 units smaller than the magnitude of the main shock; the focus of the weak event is localized in the focal region of a strong event, hearth, and it should be the same for both events. However, short-termed local instrumental seismological investigation, especially on seafloor, results usually with weak microearthquakes recordings. The magnitude of the observed micro-earthquakes is much lower than of the modeling event (more than 2). To test whether the method of the empirical Green’s function can be applied under these conditions, the accelerograms of the main shock of the earthquake in L'Aquila (6.04.09) with a magnitude Mw = 6.3 were modelled. The microearthquake with ML = 3,3 (21.05.2011) and unknown origin mechanism located in mainshock’s epicentral zone was used as the empirical Green’s function. It was concluded that the empirical Green’s function is to be preprocessed. The complex Fourier spectrum smoothing by moving average was suggested. After the smoothing the inverses Fourier transform results with new Green’s function. Thus, not only the amplitude spectrum is smoothed out, but also the phase spectrum. After such preliminary processing, the spectra of the calculated accelerograms and recorded correspond to each other much better. The modelling demonstrate good results within frequency range 0,1–10 Hz, considered usually for engineering seismological studies.


Sign in / Sign up

Export Citation Format

Share Document