An Adaptive Continuation Method for Topology Optimization of Continuum Structures Considering Buckling Constraints

2017 ◽  
Vol 09 (07) ◽  
pp. 1750092 ◽  
Author(s):  
Xingjun Gao ◽  
Lijuan Li ◽  
Haitao Ma

This paper presents an adaptive continuation method for buckling topology optimization of continuum structures using the Solid Isotropic Material with Penalization (SIMP) model. For optimization problems of minimizing structural compliance subject to constraints on material volume and buckling load factors, it has been found that the conflict between the requirements for structural stiffness and stability may have an adverse impact on the performance of existing optimization algorithms. An automatic scheme for adjusting the penalization parameter is introduced to deal with this conflict and thus achieves better designs. Based on an investigation on the effect of the penalization parameter on design evolution during the optimization process, a rule is established to determine the appropriate penalization parameter values. Using this rule, an effective scheme is developed for determining the penalization parameter values such that the buckling constraints are appropriately considered throughout the optimization process. Numerical examples are presented to illustrate the effectiveness of the proposed method.

2015 ◽  
Vol 23 (16) ◽  
pp. 2557-2566 ◽  
Author(s):  
Bin Xu ◽  
Lei Zhao ◽  
Yi Min Xie ◽  
Jiesheng Jiang

A method for the non-probabilistic reliability optimization on frequency of continuum structures with uncertain-but-bounded parameters is proposed. The objective function is to maximize the non-probabilistic reliability index of frequency requirement.The corresponding bi-level optimization model is built, where the constraints are applied on the material volume in the outer loop and the limit state equation in the inner loop. The non-probabilistic reliability index of frequency requirement is derived by the analytical method for the continuum structure with the uncertain elastic module and mass density. Further, the sensitivity of the non-probabilistic reliability index with respect to the design variables is analyzed. The topology optimization in the outer loop is performed by a bi-directional evolutionary structural optimization (BESO) method, where the numerical techniques and the optimization procedure of BESO method are presented. Numerical results show that the proposed BESO method is efficient, and convergent optimal solutions can be achieved for a variety of optimization problems on frequency non-probabilistic reliability of continuum structures.


2019 ◽  
Vol 25 (9) ◽  
pp. 1455-1474 ◽  
Author(s):  
Lei Wang ◽  
Haijun Xia ◽  
Yaowen Yang ◽  
Yiru Cai ◽  
Zhiping Qiu

Purpose The purpose of this paper is to propose a novel non-probabilistic reliability-based topology optimization (NRBTO) method for continuum structural design under interval uncertainties of load and material parameters based on the technology of 3D printing or additive manufacturing. Design/methodology/approach First, the uncertainty quantification analysis is accomplished by interval Taylor extension to determine boundary rules of concerned displacement responses. Based on the interval interference theory, a novel reliability index, named as the optimization feature distance, is then introduced to construct non-probabilistic reliability constraints. To circumvent convergence difficulties in solving large-scale variable optimization problems, the gradient-based method of moving asymptotes is also used, in which the sensitivity expressions of the present reliability measurements with respect to design variables are deduced by combination of the adjoint vector scheme and interval mathematics. Findings The main findings of this paper should lie in that new non-probabilistic reliability index, i.e. the optimization feature distance which is defined and further incorporated in continuum topology optimization issues. Besides, a novel concurrent design strategy under consideration of macro-micro integration is presented by using the developed RBTO methodology. Originality/value Uncertainty propagation analysis based on the interval Taylor extension method is conducted. Novel reliability index of the optimization feature distance is defined. Expressions of the adjoint vectors between interval bounds of displacement responses and the relative density are deduced. New NRBTO method subjected to continuum structures is developed and further solved by MMA algorithms.


2021 ◽  
Vol 37 ◽  
pp. 270-281
Author(s):  
Fangfang Yin ◽  
Kaifang Dang ◽  
Weimin Yang ◽  
Yumei Ding ◽  
Pengcheng Xie

Abstract In order to solve the application restrictions of deterministic-based topology optimization methods arising from the omission of uncertainty factors in practice, and to realize the calculation cost control of reliability-based topology optimization. In consideration of the current reliability-based topology optimization methods of continuum structures mainly based on performance indexes model with a power filter function. An efficient probabilistic reliability-based topology optimization model that regards mass and displacement as an objective function and constraint is established based on the first-order reliability method and a modified economic indexes model with a composite exponential filter function in this study. The topology optimization results obtained by different models are discussed in relation to optimal structure and convergence efficiency. Through numerical examples, it can be seen that the optimal layouts obtained by reliability-based models have an increased amount of material and more support structures, which reveals the necessity of considering uncertainty in lightweight design. In addition, the reliability-based modified model not only can obtain lighter optimal structures compared with traditional economic indexes models in most circumstances, but also has a significant advantage in convergence efficiency, with an average increase of 44.59% and 64.76% compared with the other two reliability-based models. Furthermore, the impact of the reliability index on the results is explored, which verifies the validity of the established model. This study provides a theoretical reference for lightweight or innovative feature-integrated design in engineering applications.


Sign in / Sign up

Export Citation Format

Share Document