structural compliance
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 28)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jalal Javadi Moghaddam ◽  
Davood Momeni ◽  
Ghasem Zarei

Purpose This research presents a design method for designing greenhouse structures based on topology optimization. Moreover, the structural design of a gothic greenhouse is proposed in which its structural strength has been improved by using this proposed method. In this method, the design of the structure is done mathematically; therefore, in the design process, more attention can be focused on the constraint space and boundary conditions. It was also shown how the static reliability and fatigue coefficients will change as a result of the design of the greenhouse structure with this method. Another purpose of this study is to find the weakest part of the greenhouse structure against lateral winds and other general loads on the greenhouse structure. Design/methodology/approach In the proposed method, the outer surface and the allowable volume as a constraint domain were considered. The desired loads can be located on the constraint domain. The topology optimization was used to minimize the mass and structural compliance as the objective function. The obtained volume was modified for simplifying the construction. The changes in the shape of the greenhouse structure were investigated by choosing three different penalty numbers for the topology optimization algorithm. The final design of the proposed structure was performed based on the total simultaneous critical loads on the structure. The results of the proposed method were compared in the order of different volume fractions. This showed that the volume fraction approach can significantly reduce the weight of the structure while maintaining its strength and stability. Findings Topology optimization results showed different strut and chords composition because of the changes in maximum mass limit and volume fraction. The results showed that the fatigue was more hazardous, and it decreased the strength of structure nearly three times more than a static analysis. Further, it was noticed that how the penalty numbers can affect topology optimization results. An optimal design based on topology optimization results was presented to improve the proposed greenhouse design against destruction and demolition. Furthermore, this study shows the most sensitive part of the greenhouse against the standard loads of wind, snow, and crop. Originality/value The obtained designs were compared with a conventional arch greenhouse, and then the structural performances were shown based on standard loads. The results showed that in designing the proposed structure, the optimized changes increased the structure strength against the standard loads compared to a simple arch greenhouse. Moreover, the stress safety factor and fatigue safety factor because of different designs of this structure were also compared with each other.


Actuators ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 217
Author(s):  
Peter Dørffler Ladegaard Jensen ◽  
Fengwen Wang ◽  
Ignazio Dimino ◽  
Ole Sigmund

This work proposes a systematic topology optimization approach for simultaneously designing the morphing functionality and actuation in three-dimensional wing structures. The actuation was modeled by a linear-strain-based expansion in the actuation material. A three-phase material model was employed to represent structural and actuating materials and voids. To ensure both structural stiffness with respect to aerodynamic loading and morphing capabilities, the optimization problem was formulated to minimize structural compliance, while the morphing functionality was enforced by constraining a morphing error between the actual and target wing shape. Moreover, a feature-mapping approach was utilized to constrain and simplify the actuator geometries. A trailing edge wing section was designed to validate the proposed optimization approach. Numerical results demonstrated that three-dimensional optimized wing sections utilize a more advanced structural layout to enhance structural performance while keeping the morphing functionality better than two-dimensional wing ribs. The work presents the first step towards the systematic design of three-dimensional morphing wing sections.


2021 ◽  
Author(s):  
Clinton B. Morris ◽  
Amir M. Mirzendehdel ◽  
Morad Behandish

Abstract Enforcing connectivity of parts or their complement space during automated design is essential for various manufacturing and functional considerations such as removing powder, wiring internal components, and flowing internal coolant. The global nature of connectivity makes it difficult to incorporate into generative design methods that rely on local decision making, e.g., topology optimization (TO) algorithms whose update rules depend on the sensitivity of objective functions or constraints to locally change the design. Connectivity is commonly corrected for in a post-processing step, which may result in suboptimal designs. We propose a recasting of the connectivity constraint as a locally differentiable violation measure, defined as a “virtual” compliance, modeled after physical (e.g., thermal or structural) compliance. Such measures can be used within TO alongside other objective functions and constraints, using a weighted penalty scheme to navigate tradeoffs. By carefully specifying the boundary conditions of the virtual compliance problem, the designer can enforce connectivity between arbitrary regions of the part’s complement space while satisfying a primary objective function in the TO loop. We demonstrate the effectiveness of our approach using both 2D and 3D examples, show its flexibility to consider multiple virtual domains, and confirm the benefits of considering connectivity in the design loop rather than enforcing it through post-processing.


2021 ◽  
pp. 1-24
Author(s):  
M. Elelwi ◽  
T. Calvet ◽  
R.M. Botez ◽  
T.-M. Dao

Abstract This work presents the Topology Optimisation of the Morphing Variable Span of Tapered Wing (MVSTW) using a finite element method. This topology optimisation aims to assess the feasibility of internal wing components such as ribs, spars and other structural components. This innovative approach is proposed for the telescopic mechanism of the MVSTW, which includes the sliding of the telescopically extended wing into the fixed wing segment. The optimisation is performed using the tools within ANSYS Mechanical, which allows the solving of topology optimisation problems. This study aims to minimise overall structural compliance and maximise stiffness to enhance structural performance, and thus to meet the structural integrity requirements of the MVSTW. The study evaluates the maximum displacements, stress and strain parameters of the optimised variable span morphing wing in comparison with those of the original wing. The optimised wing analyses are conducted on four wingspan extensions, that is, 0%, 25%, 50% and 75%, of the original wingspan, and for different flight speeds to include all flight phases (17, 34, 51 and 68m/s, respectively). Topology optimisation is carried out on the solid wing built with aluminium alloy 2024-T3 to distribute the wing components within the fixed and moving segments. The results show that the fixed and moving wing segments must be designed with two spar configurations, and seven ribs with their support elements in the high-strain area. The fixed and moving wing segments’ structural weight values were reduced to 16.3 and 10.3kg from 112 to 45kg, respectively. The optimised MVSTW was tested using different mechanical parameters such as strains, displacements and von Misses stresses. The results obtained from the optimised variable span morphing wing show the optimal mechanical behaviour and the structural wing integrity needed to achieve the multi-flight missions.


2021 ◽  
Vol 11 (5) ◽  
pp. 2330
Author(s):  
Jisu Park ◽  
Donghee Kim ◽  
Kyuho Sim

This paper presents a rotordynamic analysis and experimental characterization of a novel concept of a controllable gas foil bearing (C-GFB) with piezoelectric (PZT) actuators. The C-GFB consists of bump foil structures and three PZT actuators, and the PZT actuators push the bump foil structures in different displacements according to the driving voltage, enabling preload control. In order to predict the piezoelectric preload according to the driving voltage, an equivalent spring model for PZT actuators and foil structures is introduced. In addition, PZT parameters (a piezoelectric constant and stiffness) are measured through parameter identification tests using a latch. Next, static lubrication analysis for C-GFB reveals that the gas-film pressure reduces the effect of piezoelectric preload by up to a maximum of 11%, because the piezoelectric actuator has structural compliance so that it is structurally deformed by the pressure. Finally, nonlinear orbit simulation is performed, and the performance of real-time vibration control of C-GFB is evaluated. The real-time preload control is carried out at ~32.6 krpm, where the rotordynamic instability sufficiently occurs. As the driving voltage increases, the instability suppression and delay effect increase. In particular, when controlled at 150 V, the onset speed of the instability increases to 79.1 krpm. Consequently, this study demonstrates that the GFB with piezoelectric preloads is a simple, effective, and real-time method to improve the rotordynamic stability.


2021 ◽  
pp. 105971232199018
Author(s):  
Shiv Ashutosh Katiyar ◽  
Darwin Gouwanda ◽  
Fumiya Iida ◽  
Surya Girinatha Nurzaman

The adaptive morphology of a robot, such as shape adaptation, plays a significant role in adapting its behaviors. Shape adaptation should ideally be achieved without considerable cost, like the power required to deform the robot’s body, and therefore, it is reasonably considered as the last resort in classical rigid robots. However, the last decade has seen an increasing interest in soft robots: robots that can achieve deformability through their inherent material properties or structural compliance. Nevertheless, the dynamics of these types of robots is often complex and therefore it is difficult to substantiate whether the cost like the required power for changing its shape will be worthwhile to achieve the desired behavior. This article presents an approach in the development and analysis of a shape-changing locomoting robot, which relies on the ability of elastic beams to deform and vibrate. Through a proper use of elastic materials and the robot’s vibration-based dynamics, it will be shown both analytically and experimentally how shape adaptation can be designed such that it leads to desirable behaviors, with better power efficiency compared to when the robot solely relies on changing its control input. The results encourage emerging direction in robotics that investigates approaches to change robots’ behaviors through their adaptive morphology.


2021 ◽  
Vol 34 (2) ◽  
pp. 06021001
Author(s):  
Alak Bandyopadhyay ◽  
Alok Majumdar ◽  
Paul Schallhorn

2020 ◽  
Vol 485 ◽  
pp. 115533 ◽  
Author(s):  
Massimiliano Nardini ◽  
Richard D. Sandberg ◽  
Stefan C. Schlanderer

2020 ◽  
Vol 88 (11) ◽  
pp. 1482-1492 ◽  
Author(s):  
Domenico Scaramozzino ◽  
Pranav M. Khade ◽  
Robert L. Jernigan ◽  
Giuseppe Lacidogna ◽  
Alberto Carpinteri

Sign in / Sign up

Export Citation Format

Share Document