A Numerical Method to Solve Fuzzy Fractional Optimal Control Problems Using Legendre Basis Functions

Author(s):  
M. Mirvakili ◽  
T. Allahviranloo ◽  
F. Soltanian
2020 ◽  
pp. 107754632093312
Author(s):  
Ayatollah Yari

In this study, a numerical method based on Hermite polynomial approximation for solving a class of fractional optimal control problems is presented. The order of the fractional derivative is taken as less than one and described in the Caputo sense. Operational matrices of integration by using such known formulas as Caputo and Riemann–Liouville operators for computing fractional derivatives and integration of polynomials is introduced and used to reduce the problem of a system of algebraic equations. The convergence of the proposed method is analyzed, and the error upper bound for the operational matrix of the fractional integration is obtained. To confirm the validity and accuracy of the proposed numerical method, three numerical examples are presented along with a comparison between our numerical results and those obtained using Legendre polynomials. Illustrative examples are included to demonstrate the validity and applicability of the new technique.


2017 ◽  
Vol 40 (6) ◽  
pp. 2054-2061 ◽  
Author(s):  
Ali Alizadeh ◽  
Sohrab Effati

In this study, we use the modified Adomian decomposition method to solve a class of fractional optimal control problems. The performance index of a fractional optimal control problem is considered as a function of both the state and the control variables, and the dynamical system is expressed in terms of a Caputo type fractional derivative. Some properties of fractional derivatives and integrals are used to obtain Euler–Lagrange equations for a linear tracking fractional control problem and then, the modified Adomian decomposition method is used to solve the resulting fractional differential equations. This technique rapidly provides convergent successive approximations of the exact solution to a linear tracking fractional optimal control problem. We compare the proposed technique with some numerical methods to demonstrate the accuracy and efficiency of the modified Adomian decomposition method by examining several illustrative test problems.


Sign in / Sign up

Export Citation Format

Share Document