scholarly journals CHARACTERIZING ALGEBRAIC CURVES WITH INFINITELY MANY INTEGRAL POINTS

2009 ◽  
Vol 05 (04) ◽  
pp. 585-590 ◽  
Author(s):  
PARASKEVAS ALVANOS ◽  
YURI BILU ◽  
DIMITRIOS POULAKIS

A classical theorem of Siegel asserts that the set of S-integral points of an algebraic curveC over a number field is finite unless C has genus 0 and at most two points at infinity. In this paper, we give necessary and sufficient conditions for C to have infinitely many S-integral points.

1997 ◽  
Vol 40 (4) ◽  
pp. 402-415
Author(s):  
Jenna P. Carpenter

AbstractThis paper studies how the local root numbers and the Weil additive characters of the Witt ring of a number field behave under reciprocity equivalence. Given a reciprocity equivalence between two fields, at each place we define a local square class which vanishes if and only if the local root numbers are preserved. Thus this local square class serves as a local obstruction to the preservation of local root numbers. We establish a set of necessary and sufficient conditions for a selection of local square classes (one at each place) to represent a global square class. Then, given a reciprocity equivalence that has a finite wild set, we use these conditions to show that the local square classes combine to give a global square class which serves as a global obstruction to the preservation of all root numbers. Lastly, we use these results to study the behavior of Weil characters under reciprocity equivalence.


2017 ◽  
Vol 13 (10) ◽  
pp. 2505-2514 ◽  
Author(s):  
Anuj Jakhar ◽  
Sudesh K. Khanduja ◽  
Neeraj Sangwan

Let [Formula: see text] denote the ring of algebraic integers of an algebraic number field [Formula: see text], where [Formula: see text] is a root of an irreducible trinomial [Formula: see text] belonging to [Formula: see text]. In this paper, we give necessary and sufficient conditions involving only [Formula: see text] for a given prime [Formula: see text] to divide the index of the subgroup [Formula: see text] in [Formula: see text]. In particular, we deduce necessary and sufficient conditions for [Formula: see text] to be equal to [Formula: see text].


2019 ◽  
Vol 15 (02) ◽  
pp. 353-360
Author(s):  
Sudesh K. Khanduja

For an algebraic number field [Formula: see text], let [Formula: see text] denote the discriminant of an algebraic number field [Formula: see text]. It is well known that if [Formula: see text] are algebraic number fields with coprime discriminants, then [Formula: see text] are linearly disjoint over the field [Formula: see text] of rational numbers and [Formula: see text], [Formula: see text] being the degree of [Formula: see text] over [Formula: see text]. In this paper, we prove that the converse of this result holds in relative extensions of algebraic number fields. We also give some more necessary and sufficient conditions for the analogue of the above equality to hold for algebraic number fields [Formula: see text] linearly disjoint over [Formula: see text].


2017 ◽  
Vol 19 (03) ◽  
pp. 1650032 ◽  
Author(s):  
Ben Cox ◽  
Xiangqian Guo ◽  
Rencai Lu ◽  
Kaiming Zhao

Let [Formula: see text], [Formula: see text]. Then we have the algebraic curve [Formula: see text], and its coordinate algebras (the Riemann surfaces) [Formula: see text] and [Formula: see text] The Lie algebras [Formula: see text] and [Formula: see text] are called the [Formula: see text]th superelliptic Lie algebras associated to [Formula: see text]. In this paper, we determine the necessary and sufficient conditions for such Lie algebras to be simple, and determine their universal central extensions and their derivation algebras. We also study the isomorphism and automorphism problem for these Lie algebras, which will help to understand the birational equivalence of some algebraic curves of the form [Formula: see text].


1981 ◽  
Vol 33 (5) ◽  
pp. 1074-1084 ◽  
Author(s):  
R. A. Mollin

Let K be a field of characteristic zero. The Schur subgroup S(K) of Brauer group B(K) consists of those equivalence classes [A] which contain an algebra which is isomorphic to a simple summand of the group algebra KG for some finite group G. It is well known that the classes in S(K) are represented by cyclotomic algebras, (see [16]). However it is not necessarily the case that the division algebra representatives of these classes are themselves cyclotomic. The main result of this paper is to provide necessary and sufficient conditions for the latter to occur when K is any algebraic number field.Next we provide necessary and sufficient conditions for the Schur group of a local field to be induced from the Schur group of an arbitrary subfield. We obtain a corollary from this result which links it to the main result. Finally we link the concept of the stufe of a number field to the existence of certain quaternion division algebras in S(K).


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Sign in / Sign up

Export Citation Format

Share Document