ABEL ARITHMETIC FUNCTIONS IN FINITE CHARACTERISTIC

2012 ◽  
Vol 08 (06) ◽  
pp. 1557-1568
Author(s):  
DAVID ADAM

We define Abel arithmetic functions in function fields with positive characteristic. We prove that any Abel arithmetic function with exponential type lesser than [Formula: see text] is a polynomial, the bound [Formula: see text] being optimal. This provides an analog of a Bertrandias' result. Some q-analogs are considered too.

2015 ◽  
Vol 58 (3) ◽  
pp. 548-560
Author(s):  
Guangshi Lü ◽  
Ayyadurai Sankaranarayanan

AbstractLet Sk(Γ) be the space of holomorphic cusp forms of even integral weight k for the full modular group SL(z, ℤ). Let be the n-th normalized Fourier coefficients of three distinct holomorphic primitive cusp forms , and h(z) ∊ Sk3 (Γ), respectively. In this paper we study the cancellations of sums related to arithmetic functions, such as twisted by the arithmetic function λf(n).


2008 ◽  
Vol 319 (6) ◽  
pp. 2337-2350 ◽  
Author(s):  
Boris Adamczewski ◽  
Jason Bell

2019 ◽  
Vol 372 (8) ◽  
pp. 5263-5286
Author(s):  
J.-L. Colliot-Thélène ◽  
D. Harbater ◽  
J. Hartmann ◽  
D. Krashen ◽  
R. Parimala ◽  
...  

2019 ◽  
Vol 232 (2) ◽  
pp. 849-882
Author(s):  
David Harbater ◽  
Julia Hartmann ◽  
Daniel Krashen ◽  
Raman Parimala ◽  
Venapally Suresh

1966 ◽  
Vol 9 (4) ◽  
pp. 427-431 ◽  
Author(s):  
A. A. Gioia ◽  
M.V. Subbarao

In this note the arithmetic functions L(n) and w(n) denote respectively the number and product of the distinct prime divisors of the integer n ≥ 1, and L(l) = 0, w(l) = 1. An arithmetic function f is called multiplicative if f(1) = 1 and f(mn) = f(m)f(n) whenever (m, n) = 1. It is known ([1], [3], [4]) that every multiplicative function f satisfies the identity1.1


Author(s):  
Lucas Reis

This paper provides a mean value theorem for arithmetic functions [Formula: see text] defined by [Formula: see text] where [Formula: see text] is an arithmetic function taking values in [Formula: see text] and satisfying some generic conditions. As an application of our main result, we prove that the density [Formula: see text] (respectively, [Formula: see text]) of normal (respectively, primitive) elements in the finite field extension [Formula: see text] of [Formula: see text] are arithmetic functions of (nonzero) mean values.


2004 ◽  
Vol 15 (07) ◽  
pp. 691-715 ◽  
Author(s):  
NOBUSHIGE KUROKAWA ◽  
MASATO WAKAYAMA

We introduce various Ruelle type zeta functions ζL(s) according to a choice of homogeneous "length functions" for a lattice L in [Formula: see text] via Euler products. The logarithm of each ζL(s) yields naturally a certain arithmetic function. We study the asymptotic distribution of averages of such arithmetic functions. Asymptotic behavior of the zeta functions at the origin s=0 are also investigated.


1936 ◽  
Vol 1 (1) ◽  
pp. 40-41 ◽  
Author(s):  
Alonzo Church

In a recent paper the author has proposed a definition of the commonly used term “effectively calculable” and has shown on the basis of this definition that the general case of the Entscheidungsproblem is unsolvable in any system of symbolic logic which is adequate to a certain portion of arithmetic and is ω-consistent. The purpose of the present note is to outline an extension of this result to the engere Funktionenkalkul of Hilbert and Ackermann.In the author's cited paper it is pointed out that there can be associated recursively with every well-formed formula a recursive enumeration of the formulas into which it is convertible. This means the existence of a recursively defined function a of two positive integers such that, if y is the Gödel representation of a well-formed formula Y then a(x, y) is the Gödel representation of the xth formula in the enumeration of the formulas into which Y is convertible.Consider the system L of symbolic logic which arises from the engere Funktionenkalkül by adding to it: as additional undefined symbols, a symbol 1 for the number 1 (regarded as an individual), a symbol = for the propositional function = (equality of individuals), a symbol s for the arithmetic function x+1, a symbol a for the arithmetic function a described in the preceding paragraph, and symbols b1, b2, …, bk for the auxiliary arithmetic functions which are employed in the recursive definition of a; and as additional axioms, the recursion equations for the functions a, b1, b2, …, bk (expressed with free individual variables, the class of individuals being taken as identical with the class of positive integers), and two axioms of equality, x = x, and x = y →[F(x)→F(y)].


Sign in / Sign up

Export Citation Format

Share Document