ON THE FOURIER COEFFICIENTS OF MODULAR FORMS OF HALF-INTEGRAL WEIGHT

2013 ◽  
Vol 09 (08) ◽  
pp. 1879-1883 ◽  
Author(s):  
YOUNG JU CHOIE ◽  
WINFRIED KOHNEN

It is known that if the Fourier coefficients a(n)(n ≥ 1) of an elliptic modular form of even integral weight k ≥ 2 on the Hecke congruence subgroup Γ0(N)(N ∈ N) satisfy the bound a(n) ≪f nc for all n ≥ 1, where c > 0 is any number strictly less than k - 1, then f must be cuspidal. Here we investigate the case of half-integral weight modular forms. The main objective of this note is to show that to deduce that f is a cusp form, it is sufficient to impose a suitable growth condition only on the Fourier coefficients a(|D|) where D is a fundamental discriminant with (-1)kD > 0.

2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


2013 ◽  
Vol 16 ◽  
pp. 216-245
Author(s):  
Soma Purkait

AbstractFor a given cusp form $\phi $ of even integral weight satisfying certain hypotheses, Waldspurger’s theorem relates the critical value of the $\mathrm{L} $-function of the $n\mathrm{th} $ quadratic twist of $\phi $ to the $n\mathrm{th} $ coefficient of a certain modular form of half-integral weight. Waldspurger’s recipes for these modular forms of half-integral weight are far from being explicit. In particular, they are expressed in the language of automorphic representations and Hecke characters. We translate these recipes into congruence conditions involving easily computable values of Dirichlet characters. We illustrate the practicality of our ‘simplified Waldspurger’ by giving several examples.


2012 ◽  
Vol 08 (03) ◽  
pp. 749-762 ◽  
Author(s):  
THOMAS A. HULSE ◽  
E. MEHMET KIRAL ◽  
CHAN IEONG KUAN ◽  
LI-MEI LIM

From a result of Waldspurger [W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math.64 (1981) 175–198], it is known that the normalized Fourier coefficients a(m) of a half-integral weight holomorphic cusp eigenform 𝔣 are, up to a finite set of factors, one of [Formula: see text] when m is square-free and f is the integral weight cusp form related to 𝔣 by the Shimura correspondence [G. Shimura, On modular forms of half-integral weight, Ann. of Math.97 (1973) 440–481]. In this paper we address a question posed by Kohnen: which square root is a(m)? In particular, if we look at the set of a(m) with m square-free, do these Fourier coefficients change sign infinitely often? By partially analytically continuing a related Dirichlet series, we are able to show that this is so.


2013 ◽  
Vol 149 (12) ◽  
pp. 1963-2010 ◽  
Author(s):  
Kaoru Hiraga ◽  
Tamotsu Ikeda

AbstractIn this paper, we construct a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight. The Kohnen plus space can be characterized by the eigenspace of a certain Hecke operator. It can be also characterized by the behavior of the Fourier coefficients. For example, in the parallel weight case, a modular form of weight $\kappa + (1/ 2)$ with $\xi \mathrm{th} $ Fourier coefficient $c(\xi )$ belongs to the Kohnen plus space if and only if $c(\xi )= 0$ unless $\mathop{(- 1)}\nolimits ^{\kappa } \xi $ is congruent to a square modulo $4$. The Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a generalization of the Kohnen–Zagier formula.


1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if


2020 ◽  
Vol 6 (3) ◽  
Author(s):  
Martin Raum ◽  
Jiacheng Xia

Abstract We show that every elliptic modular form of integral weight greater than 1 can be expressed as linear combinations of products of at most two cusp expansions of Eisenstein series. This removes the obstruction of nonvanishing central $$\mathrm{L}$$ L -values present in all previous work. For weights greater than 2, we refine our result further, showing that linear combinations of products of exactly two cusp expansions of Eisenstein series suffice.


Author(s):  
Corentin Darreye

Abstract We study the probabilistic behavior of sums of Fourier coefficients in arithmetic progressions. We prove a result analogous to previous work of Fouvry–Ganguly–Kowalski–Michel and Kowalski–Ricotta in the context of half-integral weight holomorphic cusp forms and for prime power modulus. We actually show that these sums follow in a suitable range a mixed Gaussian distribution that comes from the asymptotic mixed distribution of Salié sums.


Sign in / Sign up

Export Citation Format

Share Document