scholarly journals Explicit application of Waldspurger’s theorem

2013 ◽  
Vol 16 ◽  
pp. 216-245
Author(s):  
Soma Purkait

AbstractFor a given cusp form $\phi $ of even integral weight satisfying certain hypotheses, Waldspurger’s theorem relates the critical value of the $\mathrm{L} $-function of the $n\mathrm{th} $ quadratic twist of $\phi $ to the $n\mathrm{th} $ coefficient of a certain modular form of half-integral weight. Waldspurger’s recipes for these modular forms of half-integral weight are far from being explicit. In particular, they are expressed in the language of automorphic representations and Hecke characters. We translate these recipes into congruence conditions involving easily computable values of Dirichlet characters. We illustrate the practicality of our ‘simplified Waldspurger’ by giving several examples.

2013 ◽  
Vol 09 (08) ◽  
pp. 1879-1883 ◽  
Author(s):  
YOUNG JU CHOIE ◽  
WINFRIED KOHNEN

It is known that if the Fourier coefficients a(n)(n ≥ 1) of an elliptic modular form of even integral weight k ≥ 2 on the Hecke congruence subgroup Γ0(N)(N ∈ N) satisfy the bound a(n) ≪f nc for all n ≥ 1, where c > 0 is any number strictly less than k - 1, then f must be cuspidal. Here we investigate the case of half-integral weight modular forms. The main objective of this note is to show that to deduce that f is a cusp form, it is sufficient to impose a suitable growth condition only on the Fourier coefficients a(|D|) where D is a fundamental discriminant with (-1)kD > 0.


2010 ◽  
Vol 06 (01) ◽  
pp. 69-87 ◽  
Author(s):  
ALISON MILLER ◽  
AARON PIXTON

We extend results of Bringmann and Ono that relate certain generalized traces of Maass–Poincaré series to Fourier coefficients of modular forms of half-integral weight. By specializing to cases in which these traces are usual traces of algebraic numbers, we generalize results of Zagier describing arithmetic traces associated to modular forms. We define correspondences [Formula: see text] and [Formula: see text]. We show that if f is a modular form of non-positive weight 2 - 2 λ and odd level N, holomorphic away from the cusp at infinity, then the traces of values at Heegner points of a certain iterated non-holomorphic derivative of f are equal to Fourier coefficients of the half-integral weight modular forms [Formula: see text].


1985 ◽  
Vol 100 ◽  
pp. 83-96 ◽  
Author(s):  
Yoshio Tanigawa

In connection with the Shimura correspondence, Shintani [6] and Niwa [4] constructed a modular form by the integral with the theta kernel arising from the Weil representation. They treated the group Sp(1) × O(2, 1). Using the special isomorphism of O(2, 1) onto SL(2), Shintani constructed a modular form of half-integral weight from that of integral weight. We can write symbolically his case as “O(2, 1)→ Sp(1)” Then Niwa’s case is “Sp(l)→ O(2, 1)”, that is from the halfintegral to the integral. Their methods are generalized by many authors. In particular, Niwa’s are fully extended by Rallis-Schiffmann to “Sp(l)→O(p, q)”.


2004 ◽  
Vol 2004 (48) ◽  
pp. 2583-2594 ◽  
Author(s):  
Howard Skogman

We use the relationship between Jacobi forms and vector-valued modular forms to study the Fourier expansions of Jacobi forms of indexesp,p2, andpqfor distinct odd primesp,q. Specifically, we show that for such indexes, a Jacobi form is uniquely determined by one of the associated components of the vector-valued modular form. However, in the case of indexes of the formpqorp2, there are restrictions on which of the components will uniquely determine the form. Moreover, for indexes of the formp, this note gives an explicit reconstruction of the entire Jacobi form from a single associated vector-valued modular form component. That is, we show how to start with a single associated vector component and use specific matrices fromSl2(ℤ)to find the other components and hence the entire Jacobi form. These results are used to discuss the possible modular forms of half-integral weight associated to the Jacobi form for different subgroups.


1981 ◽  
Vol 81 ◽  
pp. 123-151 ◽  
Author(s):  
Paul Ponomarev

In his paper [11] Shimura defined a correspondence between modular forms of half integral weight and modular forms of integral weight. To each pair (t, f(z)), consisting of a square-free integer t ≥ 1 and a cusp form of weight k/2 (k odd, ≥ 3), level N (divisible by 4) and character ϰ, he associated a certain function f(t)(z) (Ft(z) in Shimura’s notation).


2012 ◽  
Vol 08 (03) ◽  
pp. 749-762 ◽  
Author(s):  
THOMAS A. HULSE ◽  
E. MEHMET KIRAL ◽  
CHAN IEONG KUAN ◽  
LI-MEI LIM

From a result of Waldspurger [W. Kohnen and D. Zagier, Values of L-series of modular forms at the center of the critical strip, Invent. Math.64 (1981) 175–198], it is known that the normalized Fourier coefficients a(m) of a half-integral weight holomorphic cusp eigenform 𝔣 are, up to a finite set of factors, one of [Formula: see text] when m is square-free and f is the integral weight cusp form related to 𝔣 by the Shimura correspondence [G. Shimura, On modular forms of half-integral weight, Ann. of Math.97 (1973) 440–481]. In this paper we address a question posed by Kohnen: which square root is a(m)? In particular, if we look at the set of a(m) with m square-free, do these Fourier coefficients change sign infinitely often? By partially analytically continuing a related Dirichlet series, we are able to show that this is so.


1980 ◽  
Vol 32 (1) ◽  
pp. 40-58 ◽  
Author(s):  
David P. Maher

In this paper we construct modular forms from combinatorial designs, and codes over finite fields. We construct codes from designs, and lattices from codes. Then we use the combinatorial properties of the designs and the weight (or shape) structures of the codes to study the theta functions of the associated lattices. These theta functions are shown to be modular forms for the modular group or for various congruence subgroups. The levels of the forms we examine are determined by the dimensions of the codes and the characteristics of the fields. Using the Lee polynomial of the codes we can write the theta functions as homogeneous polynomials in modified Jacobi theta functions. By extending the underlying combinatorial structure, a modular form of half-integral weight is associated with a modular form of integral weight.


2000 ◽  
Vol 159 ◽  
pp. 53-85 ◽  
Author(s):  
Sharon M. Frechette

We investigate the connection between integral weight and half-integral weight modular forms. Building on results of Ueda [14], we obtain structure theorems for spaces of half-integral weight cusp forms Sk/2(4N,χ) where k and N are odd nonnegative integers with k ≥ 3, and χ is an even quadratic Dirichlet character modulo 4N. We give complete results in the case where N is a power of a single prime, and partial results in the more general case. Using these structure results, we give a classical reformulation of the representation-theoretic conditions given by Flicker [5] and Waldspurger [17] in results regarding the Shimura correspondence. Our version characterizes, in classical terms, the largest possible image of the Shimura lift given our restrictions on N and χ, by giving conditions under which a newform has an equivalent cusp form in Sk/2(4N, χ). We give examples (computed using tables of Cremona [4]) of newforms which have no equivalent half-integral weight cusp forms for any such N and χ. In addition, we compare our structure results to Ueda’s [14] decompositions of the Kohnen subspace, illustrating more precisely how the Kohnen subspace sits inside the full space of cusp forms.


2013 ◽  
Vol 149 (12) ◽  
pp. 1963-2010 ◽  
Author(s):  
Kaoru Hiraga ◽  
Tamotsu Ikeda

AbstractIn this paper, we construct a generalization of the Kohnen plus space for Hilbert modular forms of half-integral weight. The Kohnen plus space can be characterized by the eigenspace of a certain Hecke operator. It can be also characterized by the behavior of the Fourier coefficients. For example, in the parallel weight case, a modular form of weight $\kappa + (1/ 2)$ with $\xi \mathrm{th} $ Fourier coefficient $c(\xi )$ belongs to the Kohnen plus space if and only if $c(\xi )= 0$ unless $\mathop{(- 1)}\nolimits ^{\kappa } \xi $ is congruent to a square modulo $4$. The Kohnen subspace is isomorphic to a certain space of Jacobi forms. We also prove a generalization of the Kohnen–Zagier formula.


1986 ◽  
Vol 102 ◽  
pp. 51-77 ◽  
Author(s):  
Yoshio Tanigawa

In [8], H. Maass introduced the ‘Spezialschar’ which is now called the Maass space. It is defined by the relation of the Fourier coefficients of modular forms as follows. Let f be a Siegel modular form on Sp(2,Z) of weight k, and let be its Fourier expansion, where . Then f belongs to the Maass space if and only if


Sign in / Sign up

Export Citation Format

Share Document