scholarly journals The proportion of plane cubic curves over ℚ that everywhere locally have a point

2016 ◽  
Vol 12 (04) ◽  
pp. 1077-1092 ◽  
Author(s):  
Manjul Bhargava ◽  
John Cremona ◽  
Tom Fisher

We show that the proportion of plane cubic curves over [Formula: see text] that have a [Formula: see text]-rational point is a rational function in [Formula: see text], where the rational function is independent of [Formula: see text], and we determine this rational function explicitly. As a consequence, we obtain the density of plane cubic curves over [Formula: see text] that have points everywhere locally; numerically, this density is shown to be [Formula: see text].

10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


2021 ◽  
Vol 27 (1) ◽  
Author(s):  
Victoria Hoskins ◽  
Simon Pepin Lehalleur

AbstractWe study the motive of the moduli space of semistable Higgs bundles of coprime rank and degree on a smooth projective curve C over a field k under the assumption that C has a rational point. We show this motive is contained in the thick tensor subcategory of Voevodsky’s triangulated category of motives with rational coefficients generated by the motive of C. Moreover, over a field of characteristic zero, we prove a motivic non-abelian Hodge correspondence: the integral motives of the Higgs and de Rham moduli spaces are isomorphic.


2021 ◽  
Vol 381 ◽  
pp. 107605
Author(s):  
Annette Bachmayr ◽  
David Harbater ◽  
Julia Hartmann ◽  
Michael Wibmer

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Arjan Dwarshuis ◽  
Majken Roelfszema ◽  
Jaap Top

AbstractThis note reformulates Mazur’s result on the possible orders of rational torsion points on elliptic curves over $$\mathbb {Q}$$ Q in a way that makes sense for arbitrary genus one curves, regardless whether or not the curve contains a rational point. The main result is that explicit examples are provided of ‘pointless’ genus one curves over $$\mathbb {Q}$$ Q corresponding to the torsion orders 7, 8, 9, 10, 12 (and hence, all possibilities) occurring in Mazur’s theorem. In fact three distinct methods are proposed for constructing such examples, each involving different in our opinion quite nice ideas from the arithmetic of elliptic curves or from algebraic geometry.


Author(s):  
Tat Thang Nguyen ◽  
Takahiro Saito ◽  
Kiyoshi Takeuchi

2021 ◽  
Vol 2 (5) ◽  
Author(s):  
Soroosh Tayebi Arasteh ◽  
Adam Kalisz

AbstractSplines are one of the main methods of mathematically representing complicated shapes, which have become the primary technique in the fields of Computer Graphics (CG) and Computer-Aided Geometric Design (CAGD) for modeling complex surfaces. Among all, Bézier and Catmull–Rom splines are the most common in the sub-fields of engineering. In this paper, we focus on conversion between cubic Bézier and Catmull–Rom curve segments, rather than going through their properties. By deriving the conversion equations, we aim at converting the original set of the control points of either of the Catmull–Rom or Bézier cubic curves to a new set of control points, which corresponds to approximately the same shape as the original curve, when considered as the set of the control points of the other curve. Due to providing simple linear transformations of control points, the method is very simple, efficient, and easy to implement, which is further validated in this paper using some numerical and visual examples.


Sign in / Sign up

Export Citation Format

Share Document