Intervals without primes near elements of linear recurrence sequences

2018 ◽  
Vol 14 (02) ◽  
pp. 567-579
Author(s):  
Artūras Dubickas

Let [Formula: see text] be an unbounded sequence of integers satisfying a linear recurrence relation with integer coefficients. We show that for any [Formula: see text] there exist infinitely many [Formula: see text] for which [Formula: see text] consecutive integers [Formula: see text] are all divisible by certain primes. Moreover, if the sequence of integers [Formula: see text] satisfying a linear recurrence relation is unbounded and non-degenerate then for some constant [Formula: see text] the intervals [Formula: see text] do not contain prime numbers for infinitely many [Formula: see text]. Applying this argument to sequences of integer parts of powers of Pisot and Salem numbers [Formula: see text] we derive a similar result for those sequences as well which implies, for instance, that the shifted integer parts [Formula: see text], where [Formula: see text] and [Formula: see text] runs through some infinite arithmetic progression of positive integers, are all composite.

2003 ◽  
Vol 373 ◽  
pp. 89-99 ◽  
Author(s):  
Gi-Sang Cheon ◽  
Suk-Geun Hwang ◽  
Seog-Hoon Rim ◽  
Seok-Zun Song

2008 ◽  
Vol 28 (5) ◽  
pp. 1369-1375 ◽  
Author(s):  
ERIC BEDFORD ◽  
KYOUNGHEE KIM

AbstractLet A be an integer matrix, and let fA be the associated monomial map. We give a connection between the eigenvalues of A and the existence of a linear recurrence relation in the sequence of degrees.


1996 ◽  
Vol 38 (2) ◽  
pp. 147-155 ◽  
Author(s):  
A. J. van der Poorten ◽  
I. E. Shparlinski

We consider sequences (Ah)defined over the field ℚ of rational numbers and satisfying a linear homogeneous recurrence relationwith polynomial coefficients sj;. We shall assume without loss of generality, as we may, that the sj, are defined over ℤ and the initial values A0A]…, An−1 are integer numbers. Also, without loss of generality we may assume that S0 and Sn have no non-negative integer zero. Indeed, any other case can be reduced to this one by making a shift h → h – l – 1 where l is an upper bound for zeros of the corresponding polynomials (and which can be effectively estimated in terms of their heights)


The eigenvalue problem of the general anharmonic oscillator (Hamiltonian H 2 μ ( k, λ ) = -d 2 / d x 2 + kx 2 + λx 2 μ , ( k, λ ) is investi­gated in this work. Very accurate eigenvalues are obtained in all régimes of the quantum number n and the anharmonicity constant λ . The eigenvalues, as functions of λ , exhibit crossings. The qualitative features of the actual crossing pattern are substantially reproduced in the W. K. B. approximation. Successive moments of any transition between two general anharmonic oscillator eigenstates satisfy exactly a linear recurrence relation. The asymptotic behaviour of this recursion and its consequences are examined.


Integers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
Takashi Agoh ◽  
Karl Dilcher

AbstractWe derive several new convolution identities for the Stirling numbers of the first kind. As a consequence we obtain a new linear recurrence relation which generalizes known relations.


10.37236/1562 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
James Propp

Let $T(m,n)$ denote the number of ways to tile an $m$-by-$n$ rectangle with dominos. For any fixed $m$, the numbers $T(m,n)$ satisfy a linear recurrence relation, and so may be extrapolated to negative values of $n$; these extrapolated values satisfy the relation $$T(m,-2-n)=\epsilon_{m,n}T(m,n),$$ where $\epsilon_{m,n}=-1$ if $m \equiv 2$ (mod 4) and $n$ is odd and where $\epsilon_{m,n}=+1$ otherwise. This is equivalent to a fact demonstrated by Stanley using algebraic methods. Here I give a proof that provides, among other things, a uniform combinatorial interpretation of $T(m,n)$ that applies regardless of the sign of $n$.


2021 ◽  
Vol 2113 (1) ◽  
pp. 012070
Author(s):  
Ben-Chao Yang ◽  
Xue-Feng Han

Abstract Recursive relation mainly describes the unique law satisfied by a sequence, so it plays an important role in almost all branches of mathematics. It is also one of the main algorithms commonly used in computer programming. This paper first introduces the concept of recursive relation and two common basic forms, then starts with the solution of linear recursive relation with non-homogeneous constant coefficients, gives a new solution idea, and gives a general proof. Finally, through an example, the general method and the new method given in this paper are compared and verified.


2009 ◽  
Vol 2009 ◽  
pp. 1-21 ◽  
Author(s):  
Tian-Xiao He ◽  
Peter J.-S. Shiue

Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.


Sign in / Sign up

Export Citation Format

Share Document