Optimal Control of Fractional Order COVID-19 Epidemic Spreading in Japan and India 2020

2020 ◽  
Vol 15 (04) ◽  
pp. 207-236 ◽  
Author(s):  
Meghadri Das ◽  
G. P. Samanta

In Japan, the first case of Coronavirus disease 2019 (COVID-19) was reported on 15th January 2020. In India, on 30th January 2020, the first case of COVID-19 in India was reported in Kerala and the number of reported cases has increased rapidly. The main purpose of this work is to study numerically the epidemic peak for COVID-19 disease along with transmission dynamics of COVID-19 in Japan and India 2020. Taking into account the uncertainty due to the incomplete information about the coronavirus (COVID-19), we have taken the Susceptible-Asymptomatic-Infectious-Recovered (SAIR) compartmental model under fractional order framework for our study. We have also studied the effects of fractional order along with other parameters in transfer dynamics and epidemic peak control for both the countries. An optimal control problem has been studied by controlling social distancing parameter.

2014 ◽  
Vol 69 (5-6) ◽  
pp. 225-231 ◽  
Author(s):  
Anwar Zeb ◽  
Gul Zaman ◽  
Il Hyo Jung ◽  
Madad Khan

This paper deals with the optimal control problem in the giving up smoking model of fractional order. For the eradication of smoking in a community, we introduce three control variables in the form of education campaign, anti-smoking gum, and anti-nicotive drugs/medicine in the proposed fractional order model. We discuss the necessary conditions for the optimality of a general fractional optimal control problem whose fractional derivative is described in the Caputo sense. In order to do this, we minimize the number of potential and occasional smokers and maximize the number of ex-smokers. We use Pontryagin’s maximum principle to characterize the optimal levels of the three controls. The resulting optimality system is solved numerically by MATLAB.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750095 ◽  
Author(s):  
N. H. Sweilam ◽  
O. M. Saad ◽  
D. G. Mohamed

In this paper, optimal control for a novel West Nile virus (WNV) model of fractional order derivative is presented. The proposed model is governed by a system of fractional differential equations (FDEs), where the fractional derivative is defined in the Caputo sense. An optimal control problem is formulated and studied theoretically using the Pontryagin maximum principle. Two numerical methods are used to study the fractional-order optimal control problem. The methods are, the iterative optimal control method (OCM) and the generalized Euler method (GEM). Positivity, boundedness and convergence of the IOCM are studied. Comparative studies between the proposed methods are implemented, it is found that the IOCM is better than the GEM.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2806
Author(s):  
Meghadri Das ◽  
Guruprasad Samanta ◽  
Manuel De la Sen

The primary goal of this research is to investigate COVID-19 transmission patterns in West Bengal, India in 2021; the first Coronavirus illness (COVID-19) in West Bengal was revealed on 17 March 2020. We employed the modified Susceptible-Asymptomatic-Vaccinated-Comorbidity-Infectious-Recovered (SAVICR) compartmental model as part of fractional orders because of the uncertainty created by the limited Coronavirus (COVID-19) information. In this article, two sub-compartments (Normal Infected and Infected with Co-morbidity) has been considered with vaccinated class, which is relevant in the present situation. We have studied the dynamical analysis of the system and also studied sensitivity of the parameters for West Bengal framework. We have also considered an optimal control problem taking social distancing (non-pharmaceutical treatments) as a control parameter along with vaccination.


Sign in / Sign up

Export Citation Format

Share Document