Analysis of Localized Surface Plasmon Resonance in Ag/ITO/CdS/SiO2 Multilayered Nanostructured Composite

NANO ◽  
2015 ◽  
Vol 10 (08) ◽  
pp. 1550117
Author(s):  
Chao Liu ◽  
Jingwei Lv ◽  
Famei Wang ◽  
Qiang Liu ◽  
Haiwei Mu ◽  
...  

Multilayered nanoshells have attracted much attention due to their unique optical, electronic and magnetic properties. In this work, numerical calculation using discrete dipole approximation (DDA) is conducted to investigate the quad-layered metal nanoshell consisting of a particle with a dielectric silica (SiO2) core, inner cadium sulfide (CdS) shell, middle indium tin oxide (ITO) shell and outer metal silver (Ag) shell. The phenomenon is interpreted by plasmon hybridization theory and the Ag–ITO–CdS–SiO2 multilayered nanoshells are studied by extinction spectra of localized surface plasmon resonance. The variation in the spectrum peak with nanoparticle thickness and refractive index of the surrounding medium is derived. The electric field enhancement contour around the nanoparticles under illumination is analyzed at the plasmon resonance wavelength. The [Formula: see text], [Formula: see text], and [Formula: see text] modes red-shift with the refractive index of the surrounding medium and increase in the layer thickness causes either blue-shift or red-shift as shown by the extinction spectra. The mechanism of the red-shift or blue-shift is discussed. The [Formula: see text] mode blue-shifts and furthermore, the [Formula: see text] and [Formula: see text] modes of the Ag coated multilayered nanostructure are noticeable by comparing the extinction efficiency spectra of the Au–ITO–CdS–SiO2 and Ag–ITO–CdS–SiO2 multilayered nanoshells.

2021 ◽  
Vol 4 (3(60)) ◽  
pp. 9-13
Author(s):  
Iryna Yaremchuk ◽  
Tetiana Bulavinets

The object of research is plasmonic properties copper of monosulfide nanoparticles. One of the most problematic areas is that there is still no unambiguous answer to which main copper monosulfide nanoparticles parameters have a decisive effect on their resonance absorption, scattering or electric field enhancement. It is necessary to study the plasmonic properties of copper monosulfide nanoparticles depending on their main parameter, namely the dielectric constant. The principle of dipole equivalence and Mee-Gans theory for the modeling of the optical nanoparticle characteristics is used. It is found that dielectric constant is a crucial parameter determining the resulting optical response of such nanoparticles. The surrounding medium refractive index affects the position and magnitude of the nanoparticles maximum plasmonic absorption. The nonspherical nanoparticles are characterized by two plasmon peaks corresponding to transverse and longitudinal localized surface plasmon resonance if the ratio between the axes is higher than 1.5. The ellipsoidal nanoparticles exhibit higher sensitivity to changes in the refractive index of the surrounding medium in comparison to the spherical ones. The obtained research results are primarily the basis for further comprehensive research of plasmonic copper monosulfide nanoparticles for their specialized applications. Second, knowledge of the influence of the nanoparticle dielectric constant on their resulting spectral characteristics allow tuning of the localized surface plasmon resonance peak position in a wide wavelength range, from 500 to 1200 nm, using the nanoparticle synthesis technique. Thus, the material under study is promising for sensor applications in a wide spectral range.


2016 ◽  
Vol 30 (22) ◽  
pp. 1650280 ◽  
Author(s):  
Rui-Bing Wang ◽  
Zhi-Dong Zhang ◽  
Guo-Tai Jiao ◽  
Chen-Yang Xue ◽  
Shu-Bin Yan ◽  
...  

The extinction spectra and electric field distribution of an asymmetric cylindrical nanorod dimer (ACND) are calculated by discrete dipole approximation. The ACND is composed of two linear orders of cylindrical silver nanorods with different radii and lengths. The effects of the structural parameters of ACND on the localized surface plasmon resonance (LSPR) mode are also studied. Results show two resonance peaks in the extinction spectra of ACND: the higher-energy anti-bonding mode and the lower-energy bonding mode. The interaction of two hybridization plasmonic resonance modes produces an asymmetric line shape in the extinction spectra, which is considered to be a Fano resonance profile.


2006 ◽  
Vol 915 ◽  
Author(s):  
Tomofumi Arai ◽  
Penmetcha K. R. Kumar ◽  
Koichi Awazu ◽  
Junji Tominaga

AbstractIn this paper, an optical biosensor based on the localized surface plasmon resonance (LSPR) of Ag nanostructured films is proposed and demonstrated. The Ag nanostructured films, which are fabricated by the reduction of AgOx thin films, exhibit a strong LSPR at wavelengths around 370 nm in an air environment. The reflectance spectra of the Ag nanostructured film represent that the shift in the LSPR wavelength follows a linear dependence on the refractive index of the surrounding medium. By varying the concentration of streptavidin solution, we demonstrate that the Ag nanostructured films functionalized with thiol and biotin molecules can sensitively detect a binding event between biotin and streptavidin molecules.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Hyeong-Min Kim ◽  
Jae-Hyoung Park ◽  
Seung-Ki Lee

Abstract Fiber-optic-based localized surface plasmon resonance (FO-LSPR) sensors with three-dimensional (3D) nanostructures have been developed. These sensors were fabricated using zinc oxide (ZnO) nanowires and gold nanoparticles (AuNPs) for highly sensitive plasmonic biosensing. The main achievements in the development of the biosensors include: (1) an extended sensing area, (2) light trapping effect by nanowires, and (3) a simple optical system based on an optical fiber. The 3D nanostructure was fabricated by growing the ZnO nanowires on the cross-section of optical fibers using hydrothermal synthesis and via immobilization of AuNPs on the nanowires. The proposed sensor outputted a linear response according to refractive index changes. The 3D FO-LSPR sensor exhibited an enhanced localized surface plasmon resonance response of 171% for bulk refractive index changes when compared to the two-dimensional (2D) FO-LSPR sensors where the AuNPs are fixed on optical fiber as a monolayer. In addition, the prostate-specific antigen known as a useful biomarker to diagnose prostate cancer was measured with various concentrations in 2D and 3D FO-LSPR sensors, and the limits of detection (LODs) were 2.06 and 0.51 pg/ml, respectively. When compared to the 2D nanostructure, the LOD of the sensor with 3D nanostructure was increased by 404%.


Sign in / Sign up

Export Citation Format

Share Document