refractive index sensitivity
Recently Published Documents


TOTAL DOCUMENTS

232
(FIVE YEARS 76)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Monika Kiroriwal ◽  
Poonam Singal

Surface plasmon resonance (SPR)-based single-core photonic crystal fiber (PCF) biosensor is investigated with external gold coating. All the geometrical parameters such as a gold layer, an analyte layer, a lattice period and cladding air holes are optimized to enhance the sensing ability of the sensor by introducing the finite element method. The designed sensor is able to achieve the highest amplitude sensitivity (AS) of 2258.95 RIU[Formula: see text] with an acceptable refractive index sensitivity (RIS) of 6000 nm/RIU over the analyte refractive index (ARI) span of 1.31–1.40. This sensor can detect a slight index alteration in the sensing medium using a resolution of [Formula: see text] and a high figure of merit (FOM) of 79.01. With the enhanced modal behavior with simple geometry, the resulting sensor can be suitable for real-time monitoring in biological, biochemical and bio-imaging applications.


Author(s):  
Hemant Ramakant Hegde ◽  
Santhosh Chidangil ◽  
Rajeev K. Sinha

AbstractIn this work, we present the synthesis and surface immobilization of Au nanostars, Au nanocubes and Au nanorods for localized surface plasmon resonance (LSPR)-based refractometric sensing applications. Au nanostructures exhibiting LSPR peak positions in 500–900 nm spectral range were prepared by seed-mediated synthesis method. The refractive index (RI) sensitivity of all these nanostructures in the colloidal solution were measured and the sample exhibiting highest sensitivity in each category were immobilized on the glass substrate. The surface immobilized nanostructures were investigated for RI sensing. Au nanostars having LSPR peak position at 767 nm exhibited highest RI sensitivity of 484 nm/RIU in solution and 318 nm/RIU on the substrate. This study gives an outline for selecting the Au nanostructures for developing plasmonic sensing platforms.


Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 527
Author(s):  
Attila Bonyár

The bulk and surface refractive index sensitivities of LSPR biosensors, consisting of coupled plasmonic nanosphere and nano-ellipsoid dimers, were investigated by simulations using the boundary element method (BEM). The enhancement factor, defined as the ratio of plasmon extinction peak shift of multi-particle and single-particle arrangements caused by changes in the refractive index of the environment, was used to quantify the effect of coupling on the increased sensitivity of the dimers. The bulk refractive index sensitivity (RIS) was obtained by changing the dielectric medium surrounding the nanoparticles, while the surface sensitivity was modeled by depositing dielectric layers on the nanoparticle in an increasing thickness. The results show that by optimizing the interparticle gaps for a given layer thickness, up to ~80% of the optical response range of the nanoparticles can be utilized by confining the plasmon field between the particles, which translates into an enhancement of ~3–4 times compared to uncoupled, single particles with the same shape and size. The results also show that in these cases, the surface sensitivity enhancement is significantly higher than the bulk RI sensitivity enhancement (e.g., 3.2 times vs. 1.8 times for nanospheres with a 70 nm diameter), and thus the sensors’ response for molecular interactions is higher than their RIS would indicate. These results underline the importance of plasmonic coupling in the optimization of nanoparticle arrangements for biosensor applications. The interparticle gap should be tailored with respect to the size of the used receptor/target molecules to maximize the molecular sensitivity, and the presented methodology can effectively aid the optimization of fabrication technologies.


Author(s):  
Shuxian Chen ◽  
Junyi Li ◽  
Zicong Guo ◽  
Li Chen ◽  
Kunhua Wen ◽  
...  

Abstract Plasmon-induced transparency (PIT) is theoretically explored with a graphene metamaterial using finite-difference time-domain numerical simulations and coupled-mode-theory theoretical analysis. In this work, the proposed structure is consisted of one rectangular cavity and three strips to generate the PIT phenomenon. The PIT window can be regulated dynamically by adjusting the Fermi level of the graphene. Importantly, the modulation depth of the amplitude can reach 90.4%. The refractive index sensitivity of the PIT window is also investigated, and the simulation result shows that a sensitivity of 1.335 THz/RIU is achieved. Additionally, when the polarization angle of the incident light is changed gradually from 0˚ to 90˚, the performances of the structure are greatly affected. Finally, the proposed structure is particularly enlightening for the design of dynamically tuned terahertz devices.


Author(s):  
Silvia Nuti ◽  
Carlos Fernández-Lodeiro ◽  
Javier Fernández-Lodeiro ◽  
Adrián Fernández-Lodeiro ◽  
Jorge Pérez-Juste ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zichun Li ◽  
Jinhua Li ◽  
Ye Zhang ◽  
Yingjiao Zhai ◽  
Xueying Chu ◽  
...  

Due to the problems that the metal pattern layer on the top of the traditional metamaterial structure is easy to be oxidized and easy to fall off, in this paper, a novel semiconductor metamaterial nanostructure composed of a periodic array of GaAs-SiO2 cubes and a gold (Au) film has been proposed. Using FDTD solutions software to prove this metamaterial structure can achieve ultranarrow dual-band, nearly perfect absorption with a maximum absorbance of 99% and a full-width at half-maximum (FWHM) value that is less than 20 nm in the midinfrared region. The refractive index sensitivity is demonstrated by changing the background index and analyzing the absorption performance. It had been proved that this absorber has high sensitivity (2000/RIU and 1300/RIU). Using semiconductor material instead of the metal material of the top pattern layer can effectively inhibit the performance failure of the metamaterial structure caused by metal oxidation. The proposed narrow, dual-band metamaterial absorber shows promising prospects in applications such as infrared detection and imaging.


2021 ◽  
Vol 21 (11) ◽  
pp. 5535-5541
Author(s):  
Thu Trang Hoang ◽  
Van Dai Pham ◽  
Thanh Son Pham ◽  
Khai Q. Le ◽  
Quang Minh Ngo

We report a numerical study of D-shaped photonic crystal fiber based plasmonic refractive index sensor with high resolution and sensitivity in the near-infrared region. D-shaped photonic crystal fiber is formed by side polishing one part of photonic crystal fiber. It has a polishing surface where plasmonic gold layer is coated to modulate the resonant wavelength and enhance the refractive index sensitivity. Several D-shaped photonic crystal fiber plasmonic sensors with various distances from the photonic crystal fiber’s core to the polishing surface and gold thicknesses are designed and their characteristics are analyzed by the finite element method. The simulation results indicate that distance from the photonic crystal fiber’s core to the polishing surface causes modifications in the loss intensity, the resonant wavelength, and the refractive index sensitivity of D-shaped photonic crystal fiber plasmonic sensor. Mass production of refractive index sensors were achieved using a simple fabrication process, whereby the D-shaped photonic crystal fiber is grinded where distance from the photonic crystal fiber’s core to the polishing surface is less than one layer thickness and then coated with the gold layer. For the refractive index sensing applications, the maxima theoretical resolution and sensitivity of D-shaped photonic crystal fiber plasmonic sensor reach 2.98 × 10 6refractive index unit and 6,140 nm/refractive index unit in range of 1.30–1.37, respectively. We also report an initial fabrication of the D-shaped photonic crystal fiber following the standard stack-and- draw method to demonstrate the feasibility of the proposed device by using our in-house equipments. The proposed D-shaped photonic crystal fiber plasmonic sensor design in this work would be useful for the development of cheap refractive index sensors with high sensitivity and resolution.


Author(s):  
Mehrnaz Modaresialam ◽  
Gabrielle Bordelet ◽  
Zeinab Chehadi ◽  
Martin O’Byrne ◽  
Luc Favre ◽  
...  

Biosensors ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 390
Author(s):  
Qiwen Zheng ◽  
Yamei Liu ◽  
Wenguang Lu ◽  
Xiaoyu Dai ◽  
Haishan Tian ◽  
...  

In this work, we present a theoretical model of a near-infrared sensitive refractive index biosensor based on the truncate 1D photonic crystal (1D PC) structure with Dirac semimetal. This highly sensitive near-infrared biosensor originates from the sharp reflectance peak caused by the excitation of Bloch surface wave (BSW) at the interface between the Dirac semimetal and 1D PC. The sensitivity of the biosensor model is sensitive to the Fermi energy of Dirac semimetal, the thickness of the truncate layer and the refractive index of the sensing medium. By optimizing the structural parameters, the maximum refractive index sensitivity of the biosensor model can surpass 17.4 × 103/RIU, which achieves a certain competitiveness compared to conventional surface plasmon resonance (SPR) or BSW sensors. Considering that bulk materials are easier to handle than two-dimensional materials in manufacturing facilities, we judge that 3D Dirac semimetal and its related devices will provide a strong competitor and alternative to graphene-based devices.


Sign in / Sign up

Export Citation Format

Share Document