Exact solutions of some fractional differential equations arising in mathematical biology

2015 ◽  
Vol 08 (01) ◽  
pp. 1550003 ◽  
Author(s):  
Özkan Güner ◽  
Ahmet Bekir

In the last decades Exp-function method has been used for solving fractional differential equations. In this paper, we obtain exact solutions of fractional generalized reaction Duffing model and nonlinear fractional diffusion–reaction equation. The fractional derivatives are described in the modified Riemann–Liouville sense. The fractional complex transform has been suggested to convert fractional-order differential equations with modified Riemann–Liouville derivatives into integer-order differential equations, and the reduced equations can be solved by symbolic computation.

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Ahmet Bekir ◽  
Özkan Güner ◽  
Adem C. Cevikel

The exp-function method is presented for finding the exact solutions of nonlinear fractional equations. New solutions are constructed in fractional complex transform to convert fractional differential equations into ordinary differential equations. The fractional derivatives are described in Jumarie's modified Riemann-Liouville sense. We apply the exp-function method to both the nonlinear time and space fractional differential equations. As a result, some new exact solutions for them are successfully established.


Author(s):  
Ahmet Bekir ◽  
Özkan Güner ◽  
Ömer Ünsal

In this paper, we establish exact solutions for some nonlinear fractional differential equations (FDEs). The first integral method with help of the fractional complex transform (FCT) is used to obtain exact solutions for the time fractional modified Korteweg–de Vries (fmKdV) equation and the space–time fractional modified Benjamin–Bona–Mahony (fmBBM) equation. This method is efficient and powerful in solving kind of other nonlinear FDEs.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Xianzhen Zhang ◽  
Zuohua Liu ◽  
Hui Peng ◽  
Xianmin Zhang ◽  
Shiyong Yang

Based on some recent works about the general solution of fractional differential equations with instantaneous impulses, a Caputo-Hadamard fractional differential equation with noninstantaneous impulses is studied in this paper. An equivalent integral equation with some undetermined constants is obtained for this fractional order system with noninstantaneous impulses, which means that there is general solution for the impulsive systems. Next, an example is given to illustrate the obtained result.


2021 ◽  
Vol 22 ◽  
pp. 103916
Author(s):  
Haleh Tajadodi ◽  
Zareen A. Khan ◽  
Ateeq ur Rehman Irshad ◽  
J.F. Gómez-Aguilar ◽  
Aziz Khan ◽  
...  

2018 ◽  
Vol 23 (5) ◽  
pp. 771-801 ◽  
Author(s):  
Rodica Luca

>We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann–Liouville fractional differential equations with parameters and p-Laplacian operator subject to multi-point boundary conditions, which contain fractional derivatives. The proof of our main existence results is based on the Guo–Krasnosel'skii fixed-point theorem.


Author(s):  
Mohamed Houas ◽  
Mohamed Bezziou

In this paper, we discuss the existence, uniqueness and stability of solutions for a nonlocal boundary value problem of nonlinear fractional differential equations with two Caputo fractional derivatives. By applying the contraction mapping and O’Regan fixed point theorem, the existence results are obtained. We also derive the Ulam-Hyers stability of solutions. Finally, some examples are given to illustrate our results.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Khalid Hattaf

This paper aims to study the stability of fractional differential equations involving the new generalized Hattaf fractional derivative which includes the most types of fractional derivatives with nonsingular kernels. The stability analysis is obtained by means of the Lyapunov direct method. First, some fundamental results and lemmas are established in order to achieve the goal of this study. Furthermore, the results related to exponential and Mittag–Leffler stability existing in recent studies are extended and generalized. Finally, illustrative examples are presented to show the applicability of our main results in some areas of science and engineering.


Sign in / Sign up

Export Citation Format

Share Document