scholarly journals Euclidean-valued group cohomology is always reduced

2018 ◽  
Vol 10 (03) ◽  
pp. 483-491
Author(s):  
Tim Austin

Let [Formula: see text] be a topological field and [Formula: see text] a countable discrete group. Then for any linear [Formula: see text]-action on a finite-dimensional vector space over [Formula: see text], the groups of coboundaries in the inhomogeneous bar resolution are closed in all degrees, and hence the cohomology is reduced in all degrees. This can be deduced from a more general automatic-closure theorem for continuous linear transformations between inverse limits of finite-dimensional vector spaces.

1985 ◽  
Vol 28 (3) ◽  
pp. 319-331 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

Let X be a set and the semigroup (under composition) of all total transformations from X into itself. In ([6], Theorem 3) Howie characterised those elements of that can be written as a product of idempotents in different from the identity. We gather from review articles that his work was later extended by Evseev and Podran [3, 4] (and independently for finite X by Sullivan [15]) to the semigroup of all partial transformations of X into itself. Howie's result was generalized in a different direction by Kim [8], and it has also been considered in both a topological and a totally ordered setting (see [11] and [14] for brief summaries of this latter work). In addition, Magill [10] investigated the corresponding idea for endomorphisms of a Boolean ring, while J. A. Erdos [2] resolved the analogous problem for linear transformations of a finite–dimensional vector space.


1993 ◽  
Vol 45 (2) ◽  
pp. 357-368 ◽  
Author(s):  
Ming–Huat Lim

AbstractLet U be a finite dimensional vector space over an infinite field F. Let U(r) denote the r–th symmetric product space over U. Let T: U(r) → U(s) be a linear transformation which sends nonzero decomposable elements to nonzero decomposable elements. Let dim U ≥ s + 1. Then we obtain the structure of T for the following cases: (I) F is algebraically closed, (II) F is the real field, and (III) T is injective.


1985 ◽  
Vol 100 (1-2) ◽  
pp. 123-138 ◽  
Author(s):  
M. A. Reynolds ◽  
R. P. Sullivan

SynopsisIn 1966, J. M. Howie characterised the transformations of an arbitrary set that can be written as a product (under composition) of idempotent transformations of the same set. In 1967, J. A. Erdos considered the analogous problem for linear transformations of a finite-dimensional vector space and in 1983, R. J. Dawlings investigated the corresponding idea for bounded operators on a separable Hilbert space. In this paper we study the case of arbitrary vector spaces.


1971 ◽  
Vol 41 ◽  
pp. 69-73 ◽  
Author(s):  
Takehiko Miyata

Let G be a group and let k be a field. A K-representation ρ of G is a homomorphism of G into the group of non-singular linear transformations of some finite-dimensional vector space V over k. Let K be the field of fractions of the symmetric algebra S(V) of V, then G acts naturally on K as k-automorphisms. There is a natural inclusion map V→K, so we view V as a k-subvector space of K. Let v1, v2, · · ·, vn be a basis for V, then K is generated by v1, v2, · · ·, vn over k as a field and these are algebraically independent over k, that is, K is a rational field over k with the transcendence degree n. All elements of K fixed by G form a subfield of K. We denote this subfield by KG.


Author(s):  
W. J. Wong

AbstractThe surjective additive maps on the Lie ring of skew-Hermitian linear transformations on a finite-dimensional vector space over a division ring which preserve the set of rank 1 elements are determined. As an application, maps preserving commuting pairs of transformations are determined.


2008 ◽  
Vol 16 (3) ◽  
pp. 269-275 ◽  
Author(s):  
Karol Pąk

Linear Map of MatricesThe paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.


1982 ◽  
Vol 25 (2) ◽  
pp. 133-139 ◽  
Author(s):  
R. J. H. Dawlings

IfMis a mathematical system and EndMis the set of singular endomorphisms ofM, then EndMforms a semigroup under composition of mappings. A number of papers have been written to determine the subsemigroupSMof EndMgenerated by the idempotentsEMof EndMfor different systemsM. The first of these was by J. M. Howie [4]; here the case ofMbeing an unstructured setXwas considered. Howie showed that ifXis finite, then EndX=Sx.


1961 ◽  
Vol 4 (3) ◽  
pp. 261-264
Author(s):  
Jonathan Wild

Let E be a finite dimensional vector space over an arbitrary field. In E a bilinear form is given. It associates with every sub s pa ce V its right orthogonal sub space V* and its left orthogonal subspace *V. In general we cannot expect that dim V* = dim *V. However this relation will hold in some interesting special cases.


1995 ◽  
Vol 138 ◽  
pp. 113-140 ◽  
Author(s):  
E. De Negri ◽  
G. Valla

Let k be an infinite field and A a standard G-algebra. This means that there exists a positive integer n such that A = R/I where R is the polynomial ring R := k[Xv …, Xn] and I is an homogeneous ideal of R. Thus the additive group of A has a direct sum decomposition A = ⊕ At where AiAj ⊆ Ai+j. Hence, for every t ≥ 0, At is a finite-dimensional vector space over k. The Hilbert Function of A is defined by


Sign in / Sign up

Export Citation Format

Share Document