scholarly journals Relative hyperbolicity for automorphisms of free products and free groups

2020 ◽  
pp. 1-38
Author(s):  
François Dahmani ◽  
Ruoyu Li

We prove that for a free product [Formula: see text] with free factor system [Formula: see text], any automorphism [Formula: see text] preserving [Formula: see text], atoroidal (in a sense relative to [Formula: see text]) and none of whose power send two different conjugates of subgroups in [Formula: see text] on conjugates of themselves by the same element, gives rise to a semidirect product [Formula: see text] that is relatively hyperbolic with respect to suspensions of groups in [Formula: see text]. We recover a theorem of Gautero–Lustig and Ghosh that, if [Formula: see text] is a free group, [Formula: see text] an automorphism of [Formula: see text], and [Formula: see text] is its family of polynomially growing subgroups, then the semidirect product by [Formula: see text] is relatively hyperbolic with respect to the suspensions of these subgroups. We apply the first result to the conjugacy problem for certain automorphisms (atoroidal and toral) of free products of abelian groups.

1999 ◽  
Vol 09 (05) ◽  
pp. 521-528 ◽  
Author(s):  
S. V. IVANOV

A subgroup H of a free product [Formula: see text] of groups Gα, α∈ I, is called factor free if for every [Formula: see text] and β ∈ I one has S H S-1∩ Gβ = {1} (by Kurosh theorem on subgroups of free products, factor free subgroups are free). If K is a finitely generated free group, denote [Formula: see text], where r(K) is the rank of K. It is proven that if H, K are finitely generated factor free subgroups of a free product [Formula: see text] then [Formula: see text]. It is also shown that the inequality [Formula: see text] of Hanna Neumann conjecture on subgroups of free groups does not hold for factor free subgroups of free products.


2019 ◽  
Vol 101 (2) ◽  
pp. 266-271
Author(s):  
ANTON A. KLYACHKO ◽  
ANASTASIA N. PONFILENKO

This note contains a (short) proof of the following generalisation of the Friedman–Mineyev theorem (earlier known as the Hanna Neumann conjecture): if $A$ and $B$ are nontrivial free subgroups of a virtually free group containing a free subgroup of index $n$, then $\text{rank}(A\cap B)-1\leq n\cdot (\text{rank}(A)-1)\cdot (\text{rank}(B)-1)$. In addition, we obtain a virtually-free-product analogue of this result.


2001 ◽  
Vol 11 (03) ◽  
pp. 281-290 ◽  
Author(s):  
S. V. IVANOV

A subgroup H of a free product [Formula: see text] of groups Gα, α∈ I, is termed factor free if for every [Formula: see text] and β∈I one has SHS-1∩Gβ= {1} (by Kurosh theorem on subgroups of free products, factor free subgroups are free). If K is a finitely generated free group, denote [Formula: see text], where r(K) is the rank of K. It has earlier been proved by the author that if H, K are finitely generated factor free subgroups of [Formula: see text] then [Formula: see text]. It is proved in the article that this estimate is sharp and cannot be improved, that is, there are factor free subgroups H, K in [Formula: see text] so that [Formula: see text] and [Formula: see text]. It is also proved that if the factors Gα, α∈ I, are linearly ordered groups and H, K are finitely generated factor free subgroups of [Formula: see text] then [Formula: see text].


Author(s):  
I. M. Chiswell

If F is a free group on some fixed basis X, there is a mapping from F to the non-negative integers, given by sending an element of F to the length of the normal word in X±1 representing it. A similar mapping is obtained in the case of a free product of groups. Lyndon (3) considered mappings from an arbitrary group to the non-negative integers having certain properties in common with these mappings on free groups and free products.


1996 ◽  
Vol 119 (4) ◽  
pp. 615-630 ◽  
Author(s):  
D. J. Collins ◽  
E. C. Turner

The Scott Conjecture, proven by Bestvina and Handel [2] says that an automorphism of a free group of rank n has fixed subgroup of rank at most n. We characterise in Theorem A below those automorphisms that realise this maximum. It follows from this characterisation, for example, that any such automorphism has linear growth. In our paper [3], we generalised the Scott Conjecture to arbitrary free products, using Kuros rank (see Section 2 below) in place of free rank; in Theorem B, we characterise those automorphisms of a free product realising the maximum. We show that in this case the growth rate is also linear. These results extend those of [4].


1979 ◽  
Vol 31 (6) ◽  
pp. 1329-1338 ◽  
Author(s):  
A. M. Brunner ◽  
R. G. Burns

In [5] M. Hall Jr. proved, without stating it explicitly, that every finitely generated subgroup of a free group is a free factor of a subgroup of finite index. This result was made explicit, and used to give simpler proofs of known results, in [1] and [7]. The standard generalization to free products was given in [2]: If, following [13], we call a group in which every finitely generated subgroup is a free factor of a subgroup of finite index an M. Hall group, then a free product of M. Hall groups is again an M. Hall group. The recent appearance of [13], in which this result is reproved, and the rather restrictive nature of the property of being an M. Hall group, led us to attempt to determine the structure of such groups. In this paper we go a considerable way towards achieving this for those M. Hall groups which are both finitely generated and accessible.


2006 ◽  
Vol 81 (2) ◽  
pp. 199-208 ◽  
Author(s):  
Valery Bardakov ◽  
Vladimir Tolstykh

AbstractPalindromes are those reduced words of free products of groups that coincide with their reverse words. We prove that a free product of groups G has infinite palindromic width, provided that G is not the free product of two cyclic groups of order two (Theorem 2.4). This means that there is no uniform bound k such that every element of G is a product of at most k palindromes. Earlier, the similar fact was established for non-abelian free groups. The proof of Theorem 2.4 makes use of the ideas by Rhemtulla developed for the study of the widths of verbal subgroups of free products.


2011 ◽  
Vol 21 (01n02) ◽  
pp. 329-354 ◽  
Author(s):  
BENJAMIN STEINBERG ◽  
MARIYA VOROBETS ◽  
YAROSLAV VOROBETS

We construct automata over a binary alphabet with 2n states, n ≥ 2, whose states freely generate a free group of rank 2n. Combined with previous work, this shows that a free group of every finite rank can be generated by finite automata over a binary alphabet. We also construct free products of cyclic groups of order two via such automata.


1972 ◽  
Vol 15 (4) ◽  
pp. 569-573 ◽  
Author(s):  
C. Y. Tang

In [1] Higman and Neumann asked the questions whether the Frattini subgroup of a generalized free product can be larger than the amalgamated subgroup and whether such groups necessarily have maximal subgroups. In [4] Whittemore gave answers to the special cases of generalized free products of finitely many free groups with cyclic amalgamation and of generalized free products of finitely many finitely generated abelian groups. In this paper we shall study the Frattini subgroups of generalized free products of any groups with cyclic amalgamation.


2008 ◽  
Vol 144 (3) ◽  
pp. 511-534 ◽  
Author(s):  
WARREN DICKS ◽  
S. V. IVANOV

AbstractLet (Gi | i ∈ I) be a family of groups, let F be a free group, and let $G = F \ast \mathop{\text{\Large $*$}}_{i\in I} G_i,$ the free product of F and all the Gi.Let $\mathcal{F}$ denote the set of all finitely generated subgroups H of G which have the property that, for each g ∈ G and each i ∈ I, $H \cap G_i^{g} = \{1\}.$ By the Kurosh Subgroup Theorem, every element of $\mathcal{F}$ is a free group. For each free group H, the reduced rank of H, denoted r(H), is defined as $\max \{\rank(H) -1, 0\} \in \naturals \cup \{\infty\} \subseteq [0,\infty].$ To avoid the vacuous case, we make the additional assumption that $\mathcal{F}$ contains a non-cyclic group, and we define We are interested in precise bounds for $\upp$. In the special case where I is empty, Hanna Neumann proved that $\upp$ ∈ [1,2], and conjectured that $\upp$ = 1; fifty years later, this interval has not been reduced.With the understanding that ∞/(∞ − 2) is 1, we define Generalizing Hanna Neumann's theorem we prove that $\upp \in [\fun, 2\fun]$, and, moreover, $\upp = 2\fun$ whenever G has 2-torsion. Since $\upp$ is finite, $\mathcal{F}$ is closed under finite intersections. Generalizing Hanna Neumann's conjecture, we conjecture that $\upp = \fun$ whenever G does not have 2-torsion.


Sign in / Sign up

Export Citation Format

Share Document