Existence of positive solutions for systems of nonlinear fractional differential equation with p-Laplacian

2019 ◽  
Vol 13 (05) ◽  
pp. 2050089 ◽  
Author(s):  
S. Nageswara Rao ◽  
Meshari Alesemi

In this paper, we establish sufficient conditions for the existence of positive solutions for a system of nonlinear fractional [Formula: see text]-Laplacian boundary value problems under different combinations of superlinearity and sublinearity of the nonlinearities via the Guo–Krasnosel’skii fixed point theorem. Moreover, an example is given to illustrate our results.

2014 ◽  
Vol 711 ◽  
pp. 303-307 ◽  
Author(s):  
Jie Gao

In this paper, by using Leggett-Williams fixed point theorem, we will study the existence of positive solutions for a class of multi-point boundary value problems of fractional differential equation on infinite interval.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Yunhong Li ◽  
Weihua Jiang

In this work, we investigate the existence and nonexistence of positive solutions for p-Laplacian fractional differential equation with a parameter. On the basis of the properties of Green’s function and Guo-Krasnosel’skii fixed point theorem on cones, the existence and nonexistence of positive solutions are obtained for the boundary value problems. We also give some examples to illustrate the effectiveness of our main results.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Hongliang Gao ◽  
Xiaoling Han

By using the fixed point theorem, existence of positive solutions for fractional differential equation with nonlocal boundary conditionD0+αu(t)+a(t)f(t,u(t))=0,0<t<1,u(0)=0,u(1)=∑i=1∞αiu(ξi)is considered, where1<α≤2is a real number,D0+αis the standard Riemann-Liouville differentiation, andξi∈(0,1),  αi∈[0,∞)with∑i=1∞αiξiα-1<1,a(t)∈C([0,1],[0,∞)),  f(t,u)∈C([0,1]×[0,∞),[0,∞)).


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Jun-Rui Yue ◽  
Jian-Ping Sun ◽  
Shuqin Zhang

We consider the following boundary value problem of nonlinear fractional differential equation:(CD0+αu)(t)=f(t,u(t)),  t∈[0,1],  u(0)=0,   u′(0)+u′′(0)=0,  u′(1)+u′′(1)=0, whereα∈(2,3]is a real number, CD0+αdenotes the standard Caputo fractional derivative, andf:[0,1]×[0,+∞)→[0,+∞)is continuous. By using the well-known Guo-Krasnoselskii fixed point theorem, we obtain the existence of at least one positive solution for the above problem.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Yongqing Wang ◽  
Lishan Liu ◽  
Yonghong Wu

We discuss the existence of positive solutions of a boundary value problem of nonlinear fractional differential equation with changing sign nonlinearity. We first derive some properties of the associated Green function and then obtain some results on the existence of positive solutions by means of the Krasnoselskii's fixed point theorem in a cone.


Filomat ◽  
2017 ◽  
Vol 31 (5) ◽  
pp. 1265-1277 ◽  
Author(s):  
Fatma Fen ◽  
Ilkay Karac ◽  
Ozlem Ozen

This work is devoted to the existence of positive solutions for nonlinear fractional differential equations with p-Laplacian operator. By using five functionals fixed point theorem, the existence of at least three positive solutions are obtained. As an application, an example is presented to demonstrate our main result.


Sign in / Sign up

Export Citation Format

Share Document