Future Prospects of Gamma–Gamma Collider

2019 ◽  
Vol 10 (01) ◽  
pp. 215-226
Author(s):  
Tohru Takahashi

Gamma–gamma colliders based on backward Compton scattering have been discussed mainly as an option for high energy electron–positron linear colliders, aiming to play a complementary role in energy frontier physics. The flexibility of gamma-ray beam by the Compton scheme, however, allows us to apply them to physics in a wide energy range, from MeV to TeV. In this paper, we review the future prospects of gamma–gamma colliders including recent discussions about Higgs boson factories and mid- and low-energy colliders as well as the option for electron–positron linear colliders.

Author(s):  
M. V. Korzhik

The most probable scenario for the development of experimental high-energy physics in the next 50 years is the creation of a family of Future Circular Colliders (FCC) at CERN, a Circular Electron–Positron Collider at China, and a Future Electron-Ion Collider at Brookhaven (USA), which continue the Large Hadron Collider (LHC) scientific program within the framework of the Standard Model and beyond it. The first generation of colliders to be put into operation will utilize the electron beam as one of the colliding species to provide precise mass spectroscopy in a wide energy range. Similarly to the measurements at the high luminosity phase of the LHC operation, the most important property of the detectors to be used in the experimental setup is a combination of the short response of the detectors and their high time resolution. The radiation tolerance to a harsh irradiation environment remains mandatory but not the main factor of the collider’s experiments using electronic beams. A short response in combination with high time resolution ensures minimization of the influence of the pile-up and spill-over effects at the high frequency of collisions (higher than 50 MGz). The radiation hardness of the materials maintains the long-term high accuracy of the detector calibration. This paper discusses the prospects for using modern inorganic scintillation materials for calorimetric detectors at future colliders.


Universe ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 210
Author(s):  
Georgii K. Sizykh ◽  
Sergei P. Roshchupkin ◽  
Victor V. Dubov

The process of resonant high-energy electron–positron pairs production by electrons in an X-ray pulsar electromagnetic field is studied theoretically. Under the resonance conditions, the second-order process under consideration effectively reduces into two sequential first-order processes: X-ray-stimulated Compton effect and X-ray–stimulated Breit–Wheeler process. The kinematics of the process is studied in detail: the dependencies of the energy of the scattered electron on its outgoing angle and the energies of the particles of the pair on the outgoing angle of the scattered electron and the opening angle of the pair are obtained. The analysis of the number of different possible particles energies values in the entire range of the angles is also carried out, according to which the energies of the particles of the pair can take up to eight different values at a fixed outgoing angle of the scattered electron and opening angle of the pair. The estimate of the resonant differential probability per unit time of the process, which reaches the maximum value of 24 orders of the value of the non-resonant differential probability per unit time, is obtained. The angular distribution of the differential probability per unit time of the process is analyzed, particularly for the case of high-energy positrons presenting in pulsar radiation.


Author(s):  
M. Boronat ◽  
J. Fuster ◽  
I. Garcia ◽  
Ph. Roloff ◽  
R. Simoniello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document