dual resonance
Recently Published Documents


TOTAL DOCUMENTS

475
(FIVE YEARS 64)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Li Ying Nie ◽  
Buon Kiong Lau ◽  
Hanieh Aliakbari ◽  
Shang Xiang ◽  
Bao Wang ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7675
Author(s):  
Zhijie Feng ◽  
Han Peng ◽  
Yong Chen

A dual resonance vibration electromagnetic energy harvester (EMEH) is proposed in this paper to extend frequency range. Compared with the conventional dual resonance harvester, the proposed system realizes an enhanced “band-pass” harvesting characteristic by increasing the relative displacement between magnet and coil among two resonance frequencies with a significant improvement in the average harvested power. Furthermore, two resonant frequencies are decoupled in the proposed system, which leads to a more straightforward design. The proposed dual resonance EMEH is constructed with a tubular dual spring-mass structure. It is designed with a serpentine planar spring and the coil position is optimized for higher power density with an overall size of 53.9 cm3 for the dual resonance EMEH. It realizes an output power of 11 mW at the first resonant frequency of 58 Hz, 14.9 mW at the second resonant frequency of 74.5 Hz, and 0.52 mW at 65 Hz, which is in the middle of the two resonance frequencies. The frequency range of output power above 0.5 mW is from 55.8 Hz to 79.1 Hz. The maximum normalized power density (NPD) reaches up to 2.77 mW/(cm3·g2). Compared with a single resonance harvester design under the same topology and outer dimension at a resonant frequency of 74.5 Hz, the frequency range in the proposed EMEH achieves more than a 2× times extension. The proposed dual resonance EMEH also has more than 2 times wider frequency range than other state-of-art wideband EMEHs. Therefore, the proposed dual resonance EMEH is demonstrated in this paper for a high maximum NPD and higher NPD over a wide frequency range.


Author(s):  
Hari Singh ◽  
Binod Kumar Kanaujia ◽  
Ashwani Kumar ◽  
Kunal Srivastava ◽  
Sachin Kumar

Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5970
Author(s):  
Yu Zheng ◽  
Huiyi Guo ◽  
Mao Feng ◽  
Zhi Wang ◽  
Yange Liu

We demonstrated a wavelength-tunable, ultra-wideband, biconical, long-period fiber grating (BLPFG) mode converter in a two-mode fiber based on fusion taper technology and CO2 laser writing technology. Theoretical and experimental results show that after changing the diameter of the two-mode fiber by fusing and tapering, the dispersion turning point of the fiber is adjusted and wavelength-tunable broadband mode conversion is achieved efficiently. Theoretical simulation shows that the mode conversion bandwidth can cover the O + E + S + C band. In the experiment, we fabricated adiabatic tapers with cladding diameters of 113 μm and 121 μm and wrote gratings on these tapers to achieve dual-resonance coupling, thus realizing mode conversion from LP01 to LP11, with a 15 dB bandwidth of 148.8 nm from 1229.0 nm to 1377.8 nm and of 168.5 nm from 1319.7 nm to 1488.2 nm, respectively. As far as we know, this is the first time that fusion taper technology has been used to adjust the window of the dual-resonant coupling of an optical fiber. This work broadens the scope of application of the dual-resonance effect and proposes a general method for widening the bandwidth of a fiber grating with tunable wavelength.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2212
Author(s):  
Jiahao Yang ◽  
Yu-Sheng Lin

We present two types of refractive index sensors by using tunable terahertz (THz) metamaterial (TTM) based on two concentric split-ring resonators (SRRs) with different splits. By modifying the distance between SRRs and substrate, TTM shows tunable single- and dual-resonance characteristic. The maximum tuning range of resonance is 0.432 THz from 0.958 THz to 1.390 THz. To demonstrate a great flexibility of TTM in real application, TTM device is exposed on the surrounding ambient with different refractive index (n). The sensitivity of TTM can be enhanced by increasing SRR height, which is increased from 0.18 THz/RIU to 1.12 THz/RIU under the condition of n = 1.1. These results provide a strategy to improve the sensing performance of the metamaterial-based sensing device by properly arranging the geometric position of meta-atoms. The proposed TTM device can be used for tunable filters, frequency-selective detectors, and tunable high-efficiency sensors in the THz frequency range.


2021 ◽  
Author(s):  
Hyunwoo Son ◽  
Sun-Je Kim ◽  
Jongwoo Hong ◽  
Jangwoon Sung ◽  
Byoungho Lee

Abstract Colorimetric sensing, which provides effective detection of bio-molecular signals with one’s naked eye, is an exceptionally promising sensing technique in that it enables convenient detection and simplification of entire sensing system. Though colorimetric sensors based on all-dielectric nanostructures have potential to exhibit distinct color variations enabling manageable detection due to their trivial intrinsic loss, there is crucial limitation that the sensitivity to environmental changes lags behind their plasmonic counterparts because of relatively small region of near field-analyte interaction of the dielectric Mie-type resonator. To overcome this challenge, we proposed all-dielectric metasurface colorimetric sensor which exhibits dual-resonance in the visible region. Thereafter, we confirmed with simulation that, in the elaborately designed dual-Lorentzian-type spectra, highly perceptible variations of structural color were manifested even in minute change of peripheral refractive index. In addition to verifying physical effectiveness of the superior colorimetric sensing performance appearing in the dual-resonance type sensor, by combining advanced optimization technique utilizing deep neural networks, we attempted to maximize sensing performance while obtaining dramatic improvement of design efficiency. Through well-trained deep neural network that accurately simulates the input target spectrum, we numerically verified that designed colorimetric sensor shows a remarkable sensing resolution distinguishable up to change of refractive index of 0.0086.


2021 ◽  
Vol 21 (8) ◽  
pp. 4268-4276
Author(s):  
Seul-Lee Lee ◽  
Jihoon Kim ◽  
Sungwook Choi ◽  
Jinsil Han ◽  
Joong Ho Shin ◽  
...  

We propose an optical fiber grating sensor capable of simultaneously measuring pH and temperature based on a phase-shifted long-period fiber grating (PS-LPFG) inscribed on high-birefringence fiber (HBF). The PS-LPFG was fabricated on HBF with CO2 laser pulses, and a phase shift π was induced by inserting a grating-free fiber region (GFFR) between two identical LPFGs with a grating period of ˜510 μm. The length of the GFFR was set as half of the grating period to induce a π phase shift. With the spectral characteristics of a π-PS-LPFG exhibiting two split attenuation bands, the PS-LPFG written on HBF, which is referred to as the HB-PS-LPFG, can create two polarization-dependent transmission spectra with dual-resonance dips at different wavelengths according to two orthogonal input polarization states, e.g., linear horizontal polarization (LHP) and linear vertical polarization (LVP). For simultaneous measurement of pH and temperature with the fabricated HB-PS-LPFG as a sensor head, the inter-resonance wavelength separation of the dual-resonance dips in each transmission spectrum obtained for an LHP or LVP input signal was exploited as a sensor indicator. By investigating the wavelength changes of the two sensor indicators, which were induced by pH and temperature variations, linear and independent spectral responses to both pH and temperature variations were experimentally confirmed in a pH range from 1 to 11 and a temperature range from 25 to 65 °C. Owing to the unique pH and temperature responses of the fabricated HB-PS-LPFG, ambient variations in pH and temperature could be simultaneously estimated from the measured wavelength changes and sensitivities of the two sensor indicators.


Sign in / Sign up

Export Citation Format

Share Document