GRAPH TRANSFORMATION AND DISTANCE SPECTRAL RADIUS

2013 ◽  
Vol 05 (03) ◽  
pp. 1350014
Author(s):  
MILAN NATH ◽  
SOMNATH PAUL

Trees are very common in the theory and applications of combinatorics. In this paper, we consider graphs whose underlying structure is a tree and study the behavior of the distance spectral radius under a graph transformation. As an application, we find the corona tree that maximizes the distance spectral radius among all corona trees with a fixed maximum degree. We also find the graph with minimal (maximal) distance spectral radius among all corona trees. Finally, we determine the graph with minimal distance spectral radius in a special class of corona trees.

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 360
Author(s):  
Shaowei Sun ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a graph of order n. If the maximal connected subgraph of G has no cut vertex then it is called a block. If each block of graph G is a clique then G is called clique tree. The distance energy ED(G) of graph G is the sum of the absolute values of the eigenvalues of the distance matrix D(G). In this paper, we study the properties on the eigencomponents corresponding to the distance spectral radius of some special class of clique trees. Using this result we characterize a graph which gives the maximum distance spectral radius among all clique trees of order n with k cliques. From this result, we confirm a conjecture on the maximum distance energy, which was given in Lin et al. Linear Algebra Appl 467(2015) 29-39.


10.37236/5173 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Jakub Przybyło

A locally irregular graph is a graph whose adjacent vertices have distinct degrees. We say that a graph G can be decomposed into k locally irregular subgraphs if its edge set may be partitioned into k subsets each of which induces a locally irregular subgraph in G. It has been conjectured that apart from the family of exceptions which admit no such decompositions, i.e., odd paths, odd cycles and a special class of graphs of maximum degree 3, every connected graph can be decomposed into 3 locally irregular subgraphs. Using a combination of a probabilistic approach and some known theorems on degree constrained subgraphs of a given graph, we prove this to hold for graphs of minimum degree at least $10^{10}$. This problem is strongly related to edge colourings distinguishing neighbours by the pallets of their incident colours and to the 1-2-3 Conjecture. In particular, the contribution of this paper constitutes a strengthening of a result of Addario-Berry, Aldred, Dalal and Reed [J. Combin. Theory Ser. B 94 (2005) 237-244].


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


2017 ◽  
Vol 5 (1) ◽  
pp. 296-300
Author(s):  
Yanna Wang ◽  
Rundan Xing ◽  
Bo Zhou ◽  
Fengming Dong

Abstract The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We determine the unique non-starlike non-caterpillar tree with maximal distance spectral radius.


2013 ◽  
Vol 438 (11) ◽  
pp. 4260-4278 ◽  
Author(s):  
Surya Sekhar Bose ◽  
Milan Nath ◽  
Somnath Paul

2011 ◽  
Vol 59 (7) ◽  
pp. 745-754 ◽  
Author(s):  
Xiaoling Zhang ◽  
Chris Godsil

2016 ◽  
Vol 31 ◽  
pp. 335-361
Author(s):  
Xue Du ◽  
Lingsheng Shi

The spectral radius of a graph is the largest eigenvalue of the adjacency matrix of the graph. Let $T^*(n,\Delta ,l)$ be the tree which minimizes the spectral radius of all trees of order $n$ with exactly $l$ vertices of maximum degree $\Delta $. In this paper, $T^*(n,\Delta ,l)$ is determined for $\Delta =3$, and for $l\le 3$ and $n$ large enough. It is proven that for sufficiently large $n$, $T^*(n,3,l)$ is a caterpillar with (almost) uniformly distributed legs, $T^*(n,\Delta ,2)$ is a dumbbell, and $T^*(n,\Delta ,3)$ is a tree consisting of three distinct stars of order $\Delta $ connected by three disjoint paths of (almost) equal length from their centers to a common vertex. The unique tree with the largest spectral radius among all such trees is also determined. These extend earlier results of Lov\' asz and Pelik\'an, Simi\' c and To\u si\' c, Wu, Yuan and Xiao, and Xu, Lin and Shu.


Sign in / Sign up

Export Citation Format

Share Document