scholarly journals On Maximal Distance Energy

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 360
Author(s):  
Shaowei Sun ◽  
Kinkar Chandra Das ◽  
Yilun Shang

Let G be a graph of order n. If the maximal connected subgraph of G has no cut vertex then it is called a block. If each block of graph G is a clique then G is called clique tree. The distance energy ED(G) of graph G is the sum of the absolute values of the eigenvalues of the distance matrix D(G). In this paper, we study the properties on the eigencomponents corresponding to the distance spectral radius of some special class of clique trees. Using this result we characterize a graph which gives the maximum distance spectral radius among all clique trees of order n with k cliques. From this result, we confirm a conjecture on the maximum distance energy, which was given in Lin et al. Linear Algebra Appl 467(2015) 29-39.

2017 ◽  
Vol 5 (1) ◽  
pp. 296-300
Author(s):  
Yanna Wang ◽  
Rundan Xing ◽  
Bo Zhou ◽  
Fengming Dong

Abstract The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. We determine the unique non-starlike non-caterpillar tree with maximal distance spectral radius.


2013 ◽  
Vol 05 (03) ◽  
pp. 1350014
Author(s):  
MILAN NATH ◽  
SOMNATH PAUL

Trees are very common in the theory and applications of combinatorics. In this paper, we consider graphs whose underlying structure is a tree and study the behavior of the distance spectral radius under a graph transformation. As an application, we find the corona tree that maximizes the distance spectral radius among all corona trees with a fixed maximum degree. We also find the graph with minimal (maximal) distance spectral radius among all corona trees. Finally, we determine the graph with minimal distance spectral radius in a special class of corona trees.


2020 ◽  
Vol 36 (36) ◽  
pp. 411-429
Author(s):  
Yanna Wang ◽  
Bo Zhou

The distance spectral radius of a connected hypergraph is the largest eigenvalue of its distance matrix. The unique hypertrees with minimum distance spectral radii are determined in the class of hypertrees of given diameter, in the class of hypertrees of given matching number, and in the class of non-hyperstar-like hypertrees, respectively. The unique hypergraphs with minimum and second minimum distance spectral radii are determined in the class of unicylic hypergraphs. The unique hypertree with maximum distance spectral radius is determined in the class of $k$-th power hypertrees of given matching number.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Xiaoling Zhang ◽  
Jiajia Zhou

The distance Laplacian matrix of a connected graph G is defined as ℒ G = Tr G − D G , where D G is the distance matrix of G and Tr G is the diagonal matrix of vertex transmissions of G . The largest eigenvalue of ℒ G is called the distance Laplacian spectral radius of G . In this paper, we determine the graphs with maximum and minimum distance Laplacian spectral radius among all clique trees with n vertices and k cliques. Moreover, we obtain n vertices and k cliques.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-18
Author(s):  
Carolyn Reinhart

Abstract The distance matrix 𝒟(G) of a connected graph G is the matrix containing the pairwise distances between vertices. The transmission of a vertex vi in G is the sum of the distances from vi to all other vertices and T(G) is the diagonal matrix of transmissions of the vertices of the graph. The normalized distance Laplacian, 𝒟𝒧(G) = I−T(G)−1/2 𝒟(G)T(G)−1/2, is introduced. This is analogous to the normalized Laplacian matrix, 𝒧(G) = I − D(G)−1/2 A(G)D(G)−1/2, where D(G) is the diagonal matrix of degrees of the vertices of the graph and A(G) is the adjacency matrix. Bounds on the spectral radius of 𝒟 𝒧 and connections with the normalized Laplacian matrix are presented. Twin vertices are used to determine eigenvalues of the normalized distance Laplacian. The distance generalized characteristic polynomial is defined and its properties established. Finally, 𝒟𝒧-cospectrality and lack thereof are determined for all graphs on 10 and fewer vertices, providing evidence that the normalized distance Laplacian has fewer cospectral pairs than other matrices.


Symmetry ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1529 ◽  
Author(s):  
Abdollah Alhevaz ◽  
Maryam Baghipur ◽  
Hilal Ahmad Ganie ◽  
Yilun Shang

Let G be a simple undirected graph containing n vertices. Assume G is connected. Let D ( G ) be the distance matrix, D L ( G ) be the distance Laplacian, D Q ( G ) be the distance signless Laplacian, and T r ( G ) be the diagonal matrix of the vertex transmissions, respectively. Furthermore, we denote by D α ( G ) the generalized distance matrix, i.e., D α ( G ) = α T r ( G ) + ( 1 − α ) D ( G ) , where α ∈ [ 0 , 1 ] . In this paper, we establish some new sharp bounds for the generalized distance spectral radius of G, making use of some graph parameters like the order n, the diameter, the minimum degree, the second minimum degree, the transmission degree, the second transmission degree and the parameter α , improving some bounds recently given in the literature. We also characterize the extremal graphs attaining these bounds. As an special cases of our results, we will be able to cover some of the bounds recently given in the literature for the case of distance matrix and distance signless Laplacian matrix. We also obtain new bounds for the k-th generalized distance eigenvalue.


2019 ◽  
Vol 19 (04) ◽  
pp. 2050068
Author(s):  
Hezan Huang ◽  
Bo Zhou

The distance spectral radius of a connected graph is the largest eigenvalue of its distance matrix. For integers [Formula: see text] and [Formula: see text] with [Formula: see text], we prove that among the connected graphs on [Formula: see text] vertices of given maximum degree [Formula: see text] with at least one cycle, the graph [Formula: see text] uniquely maximizes the distance spectral radius, where [Formula: see text] is the graph obtained from the disjoint star on [Formula: see text] vertices and path on [Formula: see text] vertices by adding two edges, one connecting the star center with a path end, and the other being a chord of the star.


2013 ◽  
Vol 438 (11) ◽  
pp. 4260-4278 ◽  
Author(s):  
Surya Sekhar Bose ◽  
Milan Nath ◽  
Somnath Paul

2021 ◽  
Vol 37 ◽  
pp. 709-717
Author(s):  
Mustapha Aouchiche ◽  
Bilal A. Rather ◽  
Issmail El Hallaoui

For a simple connected graph $G$, let $D(G)$, $Tr(G)$, $D^{L}(G)=Tr(G)-D(G)$, and $D^{Q}(G)=Tr(G)+D(G)$ be the distance matrix, the diagonal matrix of the vertex transmissions, the distance Laplacian matrix, and the distance signless Laplacian matrix of $G$, respectively. Atik and Panigrahi [2] suggested the study of the problem: Whether all eigenvalues, except the spectral radius, of $ D(G) $ and $ D^{Q}(G) $ lie in the smallest Ger\v{s}gorin disk? In this paper, we provide a negative answer by constructing an infinite family of counterexamples.


Sign in / Sign up

Export Citation Format

Share Document