The detour domination number of a graph
For a connected graph [Formula: see text], a set [Formula: see text] is called a detour dominating set of [Formula: see text], if [Formula: see text] is a detour set and dominating set of [Formula: see text]. The detour domination number [Formula: see text] of [Formula: see text] is the minimum order of its detour dominating sets and any detour dominating set of order [Formula: see text] is called a [Formula: see text] - set of [Formula: see text]. The detour domination numbers of some standard graphs are determined. Connected graph of order [Formula: see text] with detour domination number [Formula: see text] or [Formula: see text] is characterized. For positive integers [Formula: see text] and [Formula: see text] with [Formula: see text], there exists a connected graph with [Formula: see text] and [Formula: see text].