A lower bound on the total vertex-edge domination number of a tree

Author(s):  
B. Senthilkumar ◽  
H. Naresh Kumar ◽  
Y. B. Venkatakrishnan

A vertex [Formula: see text] of a graph [Formula: see text] is said to vertex-edge dominate every edge incident to [Formula: see text], as well as every edge adjacent to these incident edges. A subset [Formula: see text] is a vertex-edge dominating set (ve-dominating set) if every edge of [Formula: see text] is vertex-edge dominated by at least one vertex of [Formula: see text]. A vertex-edge dominating set is said to be total if its induced subgraph has no isolated vertices. The minimum cardinality of a total vertex-edge dominating set of [Formula: see text], denoted by [Formula: see text], is called the total vertex-edge domination number of [Formula: see text]. In this paper, we prove that for every nontrivial tree of order [Formula: see text], with [Formula: see text] leaves and [Formula: see text] support vertices we have [Formula: see text], and we characterize extremal trees attaining the lower bound.

2017 ◽  
Vol 09 (04) ◽  
pp. 1750045 ◽  
Author(s):  
Balakrishna Krishnakumari ◽  
Mustapha Chellali ◽  
Yanamandram B. Venkatakrishnan

A vertex [Formula: see text] of a graph [Formula: see text] is said to [Formula: see text]-dominate every edge incident to [Formula: see text], as well as every edge adjacent to these incident edges. A set [Formula: see text] is a vertex-edge dominating set (double vertex-edge dominating set, respectively) if every edge of [Formula: see text] is [Formula: see text]-dominated by at least one vertex (at least two vertices) of [Formula: see text] The minimum cardinality of a vertex-edge dominating set (double vertex-edge dominating set, respectively) of [Formula: see text] is the vertex-edge domination number [Formula: see text] (the double vertex-edge domination number [Formula: see text], respectively). In this paper, we initiate the study of double vertex-edge domination. We first show that determining the number [Formula: see text] for bipartite graphs is NP-complete. We also prove that for every nontrivial connected graphs [Formula: see text] [Formula: see text] and we characterize the trees [Formula: see text] with [Formula: see text] or [Formula: see text] Finally, we provide two lower bounds on the double ve-domination number of trees and unicycle graphs in terms of the order [Formula: see text] the number of leaves and support vertices, and we characterize the trees attaining the lower bound.


Author(s):  
Nitisha Singhwal ◽  
Palagiri Venkata Subba Reddy

Let [Formula: see text] be a simple, undirected and connected graph. A vertex [Formula: see text] of a simple, undirected graph [Formula: see text]-dominates all edges incident to at least one vertex in its closed neighborhood [Formula: see text]. A set [Formula: see text] of vertices is a vertex-edge dominating set of [Formula: see text], if every edge of graph [Formula: see text] is [Formula: see text]-dominated by some vertex of [Formula: see text]. A vertex-edge dominating set [Formula: see text] of [Formula: see text] is called a total vertex-edge dominating set if the induced subgraph [Formula: see text] has no isolated vertices. The total vertex-edge domination number [Formula: see text] is the minimum cardinality of a total vertex-edge dominating set of [Formula: see text]. In this paper, we prove that the decision problem corresponding to [Formula: see text] is NP-complete for chordal graphs, star convex bipartite graphs, comb convex bipartite graphs and planar graphs. The problem of determining [Formula: see text] of a graph [Formula: see text] is called the minimum total vertex-edge domination problem (MTVEDP). We prove that MTVEDP is linear time solvable for chain graphs and threshold graphs. We also show that MTVEDP can be approximated within approximation ratio of [Formula: see text]. It is shown that the domination and total vertex-edge domination problems are not equivalent in computational complexity aspects. Finally, an integer linear programming formulation for MTVEDP is presented.


2012 ◽  
Vol 43 (1) ◽  
pp. 69-80
Author(s):  
Kulandaivel M.P. ◽  
C. Sivagnanam ◽  
P. Selvaraju

Let G = (V,E) be a connected graph. An edge dominating set X of G is called a neighborhood connected edge dominating set (nced-set) if the edge induced subgraph < N(X) > is connected. The minimum cardinality of a nced-set of G is called the neighborhood connected edge domination number of G and is denoted by. In this paper we initiate a study of this parameter.


10.37236/1085 ◽  
2006 ◽  
Vol 13 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Anders Yeo

A set $M$ of edges of a graph $G$ is a matching if no two edges in $M$ are incident to the same vertex. The matching number of $G$ is the maximum cardinality of a matching of $G$. A set $S$ of vertices in $G$ is a total dominating set of $G$ if every vertex of $G$ is adjacent to some vertex in $S$. The minimum cardinality of a total dominating set of $G$ is the total domination number of $G$. If $G$ does not contain $K_{1,3}$ as an induced subgraph, then $G$ is said to be claw-free. We observe that the total domination number of every claw-free graph with minimum degree at least three is bounded above by its matching number. In this paper, we use transversals in hypergraphs to characterize connected claw-free graphs with minimum degree at least three that have equal total domination and matching numbers.


2021 ◽  
Vol 13 (1) ◽  
pp. 145-151
Author(s):  
S. K. Vaidya ◽  
P. D. Ajani

For a graph G = (V,E), a set  S ⊆ V(S ⊆ E) is a restrained dominating (restrained edge dominating) set if every vertex (edge) not in S is adjacent (incident) to a vertex (edge) in S and to a vertex (edge) in V - S(E-S). The minimum cardinality of a restrained dominating (restrained edge dominating) set of G is called restrained domination (restrained edge domination) number of G, denoted by  γr (G) (γre(G). The restrained edge domination number of some standard graphs are already investigated while in this paper the restrained edge domination number like degree splitting, switching,  square and middle graph obtained from path.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1010
Author(s):  
Fang Miao ◽  
Wenjie Fan ◽  
Mustapha Chellali ◽  
Rana Khoeilar ◽  
Seyed Mahmoud Sheikholeslami ◽  
...  

A vertex v of a graph G = ( V , E ) , ve-dominates every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a double vertex-edge dominating set if every edge of E is ve-dominated by at least two vertices of S. The double vertex-edge domination number γ d v e ( G ) is the minimum cardinality of a double vertex-edge dominating set in G. A subset S ⊆ V is a total dominating set (respectively, a 2-dominating set) if every vertex in V has a neighbor in S (respectively, every vertex in V - S has at least two neighbors in S). The total domination number γ t ( G ) is the minimum cardinality of a total dominating set of G, and the 2-domination number γ 2 ( G ) is the minimum cardinality of a 2-dominating set of G . Krishnakumari et al. (2017) showed that for every triangle-free graph G , γ d v e ( G ) ≤ γ 2 ( G ) , and in addition, if G has no isolated vertices, then γ d v e ( G ) ≤ γ t ( G ) . Moreover, they posed the problem of characterizing those graphs attaining the equality in the previous bounds. In this paper, we characterize all trees T with γ d v e ( T ) = γ t ( T ) or γ d v e ( T ) = γ 2 ( T ) .


Author(s):  
Purnima Gupta ◽  
Deepti Jain

In a graph [Formula: see text], a set [Formula: see text] is a [Formula: see text]-point set dominating set (in short 2-psd set) of [Formula: see text] if for every subset [Formula: see text] there exists a nonempty subset [Formula: see text] containing at most two vertices such that the induced subgraph [Formula: see text] is connected in [Formula: see text]. The [Formula: see text]-point set domination number of [Formula: see text], denoted by [Formula: see text], is the minimum cardinality of a 2-psd set of [Formula: see text]. The main focus of this paper is to find the value of [Formula: see text] for a separable graph and thereafter computing [Formula: see text] for some well-known classes of separable graphs. Further we classify the set of all 2-psd sets of a separable graph into six disjoint classes and study the existence of minimum 2-psd sets in each class.


Author(s):  
B. Senthilkumar ◽  
H. Naresh Kumar ◽  
Y. B. Venkatakrishnan

For a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is the total edge dominating set if every edge in [Formula: see text] is adjacent to at least one edge in [Formula: see text]. The minimum cardinality of a total edge dominated set, denoted by [Formula: see text], is called the total edge domination number of a graph [Formula: see text]. We prove that for every tree [Formula: see text] of diameter at least two with [Formula: see text] leaves and [Formula: see text] support vertices we have [Formula: see text], and we characterize the trees attaining each of the bounds.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
S. K. Vaidya ◽  
R. M. Pandit

For a graph G=V,E, a subset F of E is called an edge dominating set of G if every edge not in F is adjacent to some edge in F. The edge domination number γ′G of G is the minimum cardinality taken over all edge dominating sets of G. Here, we determine the edge domination number for shadow graphs, middle graphs, and total graphs of paths and cycles.


2020 ◽  
Vol 6 (1) ◽  
pp. 147
Author(s):  
B. Senthilkumar ◽  
Yanamandram B. Venkatakrishnan ◽  
H. Naresh Kumar

Let \(G=(V,E)\) be a simple graph. A set \(S\subseteq V\) is a dominating set if every vertex in \(V \setminus S\) is adjacent to a vertex in \(S\). The domination number of a graph \(G\), denoted by \(\gamma(G)\) is the minimum cardinality of a dominating set of \(G\). A set \(D \subseteq E\) is an edge dominating set if every edge in \(E\setminus D\) is adjacent to an edge in \(D\). The edge domination number of a graph \(G\), denoted by \(\gamma'(G)\) is the minimum cardinality of an edge dominating set of \(G\). We characterize trees with  domination number equal to twice edge domination number.


Sign in / Sign up

Export Citation Format

Share Document