scholarly journals Edge Domination in Some Path and Cycle Related Graphs

2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
S. K. Vaidya ◽  
R. M. Pandit

For a graph G=V,E, a subset F of E is called an edge dominating set of G if every edge not in F is adjacent to some edge in F. The edge domination number γ′G of G is the minimum cardinality taken over all edge dominating sets of G. Here, we determine the edge domination number for shadow graphs, middle graphs, and total graphs of paths and cycles.


Author(s):  
A. Cabrera-Martínez ◽  
F. A. Hernández-Mira

AbstractLet G be a graph of minimum degree at least two. A set $$D\subseteq V(G)$$ D ⊆ V ( G ) is said to be a double total dominating set of G if $$|N(v)\cap D|\ge 2$$ | N ( v ) ∩ D | ≥ 2 for every vertex $$v\in V(G)$$ v ∈ V ( G ) . The minimum cardinality among all double total dominating sets of G is the double total domination number of G. In this article, we continue with the study of this parameter. In particular, we provide new bounds on the double total domination number in terms of other domination parameters. Some of our results are tight bounds that improve some well-known results.



10.37236/953 ◽  
2007 ◽  
Vol 14 (1) ◽  
Author(s):  
Adriana Hansberg ◽  
Dirk Meierling ◽  
Lutz Volkmann

A set $D\subseteq V$ of vertices is said to be a (connected) distance $k$-dominating set of $G$ if the distance between each vertex $u\in V-D$ and $D$ is at most $k$ (and $D$ induces a connected graph in $G$). The minimum cardinality of a (connected) distance $k$-dominating set in $G$ is the (connected) distance $k$-domination number of $G$, denoted by $\gamma_k(G)$ ($\gamma_k^c(G)$, respectively). The set $D$ is defined to be a total $k$-dominating set of $G$ if every vertex in $V$ is within distance $k$ from some vertex of $D$ other than itself. The minimum cardinality among all total $k$-dominating sets of $G$ is called the total $k$-domination number of $G$ and is denoted by $\gamma_k^t(G)$. For $x\in X\subseteq V$, if $N^k[x]-N^k[X-x]\neq\emptyset$, the vertex $x$ is said to be $k$-irredundant in $X$. A set $X$ containing only $k$-irredundant vertices is called $k$-irredundant. The $k$-irredundance number of $G$, denoted by $ir_k(G)$, is the minimum cardinality taken over all maximal $k$-irredundant sets of vertices of $G$. In this paper we establish lower bounds for the distance $k$-irredundance number of graphs and trees. More precisely, we prove that ${5k+1\over 2}ir_k(G)\geq \gamma_k^c(G)+2k$ for each connected graph $G$ and $(2k+1)ir_k(T)\geq\gamma_k^c(T)+2k\geq |V|+2k-kn_1(T)$ for each tree $T=(V,E)$ with $n_1(T)$ leaves. A class of examples shows that the latter bound is sharp. The second inequality generalizes a result of Meierling and Volkmann and Cyman, Lemańska and Raczek regarding $\gamma_k$ and the first generalizes a result of Favaron and Kratsch regarding $ir_1$. Furthermore, we shall show that $\gamma_k^c(G)\leq{3k+1\over2}\gamma_k^t(G)-2k$ for each connected graph $G$, thereby generalizing a result of Favaron and Kratsch regarding $k=1$.



2020 ◽  
Vol 12 (02) ◽  
pp. 2050025
Author(s):  
Manal N. Al-Harere ◽  
Mohammed A. Abdlhusein

In this paper, a new model of domination in graphs called the pitchfork domination is introduced. Let [Formula: see text] be a finite, simple and undirected graph without isolated vertices, a subset [Formula: see text] of [Formula: see text] is a pitchfork dominating set if every vertex [Formula: see text] dominates at least [Formula: see text] and at most [Formula: see text] vertices of [Formula: see text], where [Formula: see text] and [Formula: see text] are non-negative integers. The domination number of [Formula: see text], denotes [Formula: see text] is a minimum cardinality over all pitchfork dominating sets in [Formula: see text]. In this work, pitchfork domination when [Formula: see text] and [Formula: see text] is studied. Some bounds on [Formula: see text] related to the order, size, minimum degree, maximum degree of a graph and some properties are given. Pitchfork domination is determined for some known and new modified graphs. Finally, a question has been answered and discussed that; does every finite, simple and undirected graph [Formula: see text] without isolated vertices have a pitchfork domination or not?



Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 194 ◽  
Author(s):  
Abel Cabrera-Martínez ◽  
Juan Carlos Hernández-Gómez ◽  
Ernesto Parra-Inza ◽  
José María Sigarreta Almira

A set of vertices of a graph G is a total dominating set if every vertex of G is adjacent to at least one vertex in such a set. We say that a total dominating set D is a total outer k-independent dominating set of G if the maximum degree of the subgraph induced by the vertices that are not in D is less or equal to k − 1 . The minimum cardinality among all total outer k-independent dominating sets is the total outer k-independent domination number of G. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus–Gaddum type results. Finally, we prove that computing the total outer k-independent domination number of a graph G is an NP-hard problem.



2020 ◽  
Vol 12 (04) ◽  
pp. 2050052 ◽  
Author(s):  
Lidan Pei ◽  
Xiangfeng Pan

Let [Formula: see text] be a positive integer and [Formula: see text] be a simple connected graph. The eccentric distance sum of [Formula: see text] is defined as [Formula: see text], where [Formula: see text] is the maximum distance from [Formula: see text] to any other vertex and [Formula: see text] is the sum of all distances from [Formula: see text]. A set [Formula: see text] is a distance [Formula: see text]-dominating set of [Formula: see text] if for every vertex [Formula: see text], [Formula: see text] for some vertex [Formula: see text]. The minimum cardinality among all distance [Formula: see text]-dominating sets of [Formula: see text] is called the distance [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, the trees among all [Formula: see text]-vertex trees with distance [Formula: see text]-domination number [Formula: see text] having the minimal eccentric distance sum are determined.



2017 ◽  
Vol 09 (05) ◽  
pp. 1750069 ◽  
Author(s):  
R. Vasanthi ◽  
K. Subramanian

Let [Formula: see text] be a simple and connected graph. A dominating set [Formula: see text] is said to be a vertex covering transversal dominating set if it intersects every minimum vertex covering set of [Formula: see text]. The vertex covering transversal domination number [Formula: see text] is the minimum cardinality among all vertex covering transversal dominating sets of [Formula: see text]. A vertex covering transversal dominating set of minimum cardinality [Formula: see text] is called a minimum vertex covering transversal dominating set or simply a [Formula: see text]-set. In this paper, we prove some general theorems on the vertex covering transversal domination number of a simple connected graph. We also provide some results about [Formula: see text]-sets and try to classify those sets based on their intersection with the minimum vertex covering sets.



2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
T. Tamizh Chelvam ◽  
T. Asir

A subset D of the vertex set of a graph G, is a dominating set if every vertex in V−D is adjacent to at least one vertex in D. The domination number γ(G) is the minimum cardinality of a dominating set of G. A subset of V−D, which is also a dominating set of G is called an inverse dominating set of G with respect to D. The inverse domination number γ′(G) is the minimum cardinality of the inverse dominating sets. Domke et al. (2004) characterized connected graphs G with γ(G)+γ′(G)=n, where n is the number of vertices in G. It is the purpose of this paper to give a complete characterization of graphs G with minimum degree at least two and γ(G)+γ′(G)=n−1.



2021 ◽  
Vol 13 (1) ◽  
pp. 145-151
Author(s):  
S. K. Vaidya ◽  
P. D. Ajani

For a graph G = (V,E), a set  S ⊆ V(S ⊆ E) is a restrained dominating (restrained edge dominating) set if every vertex (edge) not in S is adjacent (incident) to a vertex (edge) in S and to a vertex (edge) in V - S(E-S). The minimum cardinality of a restrained dominating (restrained edge dominating) set of G is called restrained domination (restrained edge domination) number of G, denoted by  γr (G) (γre(G). The restrained edge domination number of some standard graphs are already investigated while in this paper the restrained edge domination number like degree splitting, switching,  square and middle graph obtained from path.



Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1010
Author(s):  
Fang Miao ◽  
Wenjie Fan ◽  
Mustapha Chellali ◽  
Rana Khoeilar ◽  
Seyed Mahmoud Sheikholeslami ◽  
...  

A vertex v of a graph G = ( V , E ) , ve-dominates every edge incident to v, as well as every edge adjacent to these incident edges. A set S ⊆ V is a double vertex-edge dominating set if every edge of E is ve-dominated by at least two vertices of S. The double vertex-edge domination number γ d v e ( G ) is the minimum cardinality of a double vertex-edge dominating set in G. A subset S ⊆ V is a total dominating set (respectively, a 2-dominating set) if every vertex in V has a neighbor in S (respectively, every vertex in V - S has at least two neighbors in S). The total domination number γ t ( G ) is the minimum cardinality of a total dominating set of G, and the 2-domination number γ 2 ( G ) is the minimum cardinality of a 2-dominating set of G . Krishnakumari et al. (2017) showed that for every triangle-free graph G , γ d v e ( G ) ≤ γ 2 ( G ) , and in addition, if G has no isolated vertices, then γ d v e ( G ) ≤ γ t ( G ) . Moreover, they posed the problem of characterizing those graphs attaining the equality in the previous bounds. In this paper, we characterize all trees T with γ d v e ( T ) = γ t ( T ) or γ d v e ( T ) = γ 2 ( T ) .



Author(s):  
B. Senthilkumar ◽  
H. Naresh Kumar ◽  
Y. B. Venkatakrishnan

For a graph [Formula: see text] with vertex set [Formula: see text] and edge set [Formula: see text], a subset [Formula: see text] of [Formula: see text] is the total edge dominating set if every edge in [Formula: see text] is adjacent to at least one edge in [Formula: see text]. The minimum cardinality of a total edge dominated set, denoted by [Formula: see text], is called the total edge domination number of a graph [Formula: see text]. We prove that for every tree [Formula: see text] of diameter at least two with [Formula: see text] leaves and [Formula: see text] support vertices we have [Formula: see text], and we characterize the trees attaining each of the bounds.



Sign in / Sign up

Export Citation Format

Share Document