Italian domination on Mycielskian and Sierpinski graphs

Author(s):  
Jismy Varghese ◽  
S. Aparna Lakshmanan

An Italian dominating function (IDF) of a graph G is a function [Formula: see text] satisfying the condition that for every [Formula: see text] with [Formula: see text] The weight of an IDF on [Formula: see text] is the sum [Formula: see text] and Italian domination number, [Formula: see text] is the minimum weight of an IDF. In this paper, we prove that [Formula: see text] where [Formula: see text] is the Mycielskian graph of [Formula: see text]. We have also studied the impact of edge addition on Italian domination number. We also obtain a bound for the Italian domination number of Sierpinski graph [Formula: see text] and find the exact value of [Formula: see text].

2017 ◽  
Vol 09 (02) ◽  
pp. 1750023 ◽  
Author(s):  
Nacéra Meddah ◽  
Mustapha Chellali

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] of [Formula: see text] for which [Formula: see text]. The weight of a RDF is the sum [Formula: see text], and the minimum weight of a RDF [Formula: see text] is the Roman domination number [Formula: see text]. A subset [Formula: see text] of [Formula: see text] is a [Formula: see text]-independent set of [Formula: see text] if every vertex of [Formula: see text] has at most one neighbor in [Formula: see text] The maximum cardinality of a [Formula: see text]-independent set of [Formula: see text] is the [Formula: see text]-independence number [Formula: see text] Both parameters are incomparable in general, however, we show that if [Formula: see text] is a tree, then [Formula: see text]. Moreover, all extremal trees attaining equality are characterized.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


2018 ◽  
Vol 11 (03) ◽  
pp. 1850034 ◽  
Author(s):  
J. Amjadi ◽  
M. Soroudi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text] and arc set [Formula: see text]. A twin signed total Roman dominating function (TSTRDF) on the digraph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) [Formula: see text] and [Formula: see text] for each [Formula: see text], where [Formula: see text] (respectively [Formula: see text]) consists of all in-neighbors (respectively out-neighbors) of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an in-neighbor [Formula: see text] and an out-neighbor [Formula: see text] with [Formula: see text]. The weight of an TSTRDF [Formula: see text] is [Formula: see text]. The twin signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an TSTRDF on [Formula: see text]. In this paper, we initiate the study of twin signed total Roman domination in digraphs and we present some sharp bounds on [Formula: see text]. In addition, we determine the twin signed Roman domination number of some classes of digraphs.


2015 ◽  
Vol 07 (04) ◽  
pp. 1550048 ◽  
Author(s):  
Mustapha Chellali ◽  
Nader Jafari Rad

A Roman dominating function (RDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the condition that every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. The weight of a RDF [Formula: see text] is the value [Formula: see text]. The Roman domination number, [Formula: see text], of [Formula: see text] is the minimum weight of a RDF on [Formula: see text]. An RDF [Formula: see text] is called an independent Roman dominating function (IRDF) if the set [Formula: see text] is an independent set. The independent Roman domination number, [Formula: see text], is the minimum weight of an IRDF on [Formula: see text]. In this paper, we study trees with independent Roman domination number twice their independent domination number, answering an open question.


2017 ◽  
Vol 10 (01) ◽  
pp. 1750004 ◽  
Author(s):  
R. Khoeilar ◽  
S. M. Sheikholeslami

Let [Formula: see text] be a finite and simple digraph. A [Formula: see text]-rainbow dominating function ([Formula: see text]RDF) of a digraph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the set of in-neighbors of [Formula: see text]. The weight of a [Formula: see text]RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a digraph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a [Formula: see text]RDF of [Formula: see text]. The [Formula: see text]-rainbow reinforcement number [Formula: see text] of a digraph [Formula: see text] is the minimum number of arcs that must be added to [Formula: see text] in order to decrease the [Formula: see text]-rainbow domination number. In this paper, we initiate the study of [Formula: see text]-rainbow reinforcement number in digraphs and we present some sharp bounds for [Formula: see text]. In particular, we determine the [Formula: see text]-rainbow reinforcement number of some classes of digraphs.


2016 ◽  
Vol 09 (01) ◽  
pp. 1650018 ◽  
Author(s):  
N. Dehgardi ◽  
M. Falahat ◽  
S. M. Sheikholeslami ◽  
Abdollah Khodkar

A [Formula: see text]-rainbow dominating function (2RDF) of a graph [Formula: see text] is a function [Formula: see text] from the vertex set [Formula: see text] to the set of all subsets of the set [Formula: see text] such that for any vertex [Formula: see text] with [Formula: see text] the condition [Formula: see text] is fulfilled, where [Formula: see text] is the open neighborhood of [Formula: see text]. The weight of a 2RDF [Formula: see text] is the value [Formula: see text]. The [Formula: see text]-rainbow domination number of a graph [Formula: see text], denoted by [Formula: see text], is the minimum weight of a 2RDF of G. The [Formula: see text]-rainbow domination subdivision number [Formula: see text] is the minimum number of edges that must be subdivided (each edge in [Formula: see text] can be subdivided at most once) in order to increase the 2-rainbow domination number. It is conjectured that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text]. In this paper, we first prove this conjecture for some classes of graphs and then we prove that for any connected graph [Formula: see text] of order [Formula: see text], [Formula: see text].


2018 ◽  
Vol 10 (02) ◽  
pp. 1850020 ◽  
Author(s):  
J. Amjadi

Let [Formula: see text] be a finite simple digraph with vertex set [Formula: see text]. A signed total Roman dominating function (STRDF) on a digraph [Formula: see text] is a function [Formula: see text] such that (i) [Formula: see text] for every [Formula: see text], where [Formula: see text] consists of all inner neighbors of [Formula: see text], and (ii) every vertex [Formula: see text] for which [Formula: see text] has an inner neighbor [Formula: see text] for which [Formula: see text]. The weight of an STRDF [Formula: see text] is [Formula: see text]. The signed total Roman domination number [Formula: see text] of [Formula: see text] is the minimum weight of an STRDF on [Formula: see text]. A set [Formula: see text] of distinct STRDFs on [Formula: see text] with the property that [Formula: see text] for each [Formula: see text] is called a signed total Roman dominating family (STRD family) (of functions) on [Formula: see text]. The maximum number of functions in an STRD family on [Formula: see text] is the signed total Roman domatic number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of signed total Roman domatic number in digraphs and we present some sharp bounds for [Formula: see text]. In addition, we determine the signed total Roman domatic number of some classes of digraphs.


Filomat ◽  
2017 ◽  
Vol 31 (20) ◽  
pp. 6515-6528 ◽  
Author(s):  
F. Ramezani ◽  
E.D. Rodríguez-Bazan ◽  
J.A. Rodríguez-Velázquez

A map f : V?(0,1,2) is a Roman dominating function on a graph G = (V,E) if for every vertex v ? V with f(v)=0, there exists a vertex u, adjacent to v, such that f(u)=2. The weight of a Roman dominating function is given by f(V)=?u?V f(u). The minimum weight among all Roman dominating functions on G is called the Roman domination number of G. In this article we study the Roman domination number of Generalized Sierpi?ski graphs S(G,t). More precisely, we obtain a general upper bound on the Roman domination number of S(G,t) and discuss the tightness of this bound. In particular, we focus on the cases in which the base graph G is a path, a cycle, a complete graph or a graph having exactly one universal vertex.


2020 ◽  
Vol 12 (01) ◽  
pp. 2050013 ◽  
Author(s):  
R. Khoeilar ◽  
L. Shahbazi ◽  
S. M. Sheikholeslami ◽  
Zehui Shao

Let [Formula: see text] be an integer and [Formula: see text] be a simple and finite graph with vertex set [Formula: see text]. A signed total Roman [Formula: see text]-dominating function (STR[Formula: see text]DF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] and (ii) [Formula: see text] holds for any vertex [Formula: see text]. The weight of an STR[Formula: see text]DF [Formula: see text] is [Formula: see text] and the minimum weight of an STR[Formula: see text]DF is the signed total Roman [Formula: see text]-domination number [Formula: see text] of [Formula: see text]. In this paper, we establish some sharp bounds on the signed total Roman 2-domination number.


2019 ◽  
Vol 12 (01) ◽  
pp. 2050009
Author(s):  
L. Shahbazi ◽  
H. Abdollahzadeh Ahangar ◽  
R. Khoeilar ◽  
S. M. Sheikholeslami

A signed total double Roman [Formula: see text]-dominating function (STDRkDF) on an isolated-free graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] has at least two neighbors assigned 2 under [Formula: see text] or at least one neighbor [Formula: see text] with [Formula: see text], (ii) every vertex [Formula: see text] with [Formula: see text] has at least one neighbor [Formula: see text] with [Formula: see text] and (iii) [Formula: see text] holds for any vertex [Formula: see text]. The weight of an STDRkDF is the value [Formula: see text] The signed total double Roman [Formula: see text]-domination number [Formula: see text] is the minimum weight among all STDRkDFs on [Formula: see text]. In this paper, we initiate the study of the signed total double Roman [Formula: see text]-domination in graphs and present some sharp bounds for this parameter. In addition, we determine the signed total double Roman [Formula: see text]-domination of paths for [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document