Edge lifting and Roman domination in graphs

Author(s):  
Hicham Meraimi ◽  
Mustapha Chellali

Let [Formula: see text] be a graph, and let [Formula: see text] be an induced path centered at [Formula: see text]. An edge lift defined on [Formula: see text] is the action of removing edges [Formula: see text] and [Formula: see text] while adding the edge [Formula: see text] to the edge set of [Formula: see text]. In this paper, we initiate the study of the effects of edge lifting on the Roman domination number of a graph, where various properties are established. A characterization of all trees for which every edge lift increases the Roman domination number is provided. Moreover, we characterize the edge lift of a graph decreasing the Roman domination number, and we show that there are no graphs with at most one cycle for which every possible edge lift can have this property.

Author(s):  
Amit Sharma ◽  
P. Venkata Subba Reddy

For a simple, undirected graph [Formula: see text], a function [Formula: see text] which satisfies the following conditions is called an outer-independent total Roman dominating function (OITRDF) of [Formula: see text] with weight [Formula: see text]. (C1) For all [Formula: see text] with [Formula: see text] there exists a vertex [Formula: see text] such that [Formula: see text] and [Formula: see text], (C2) The induced subgraph with vertex set [Formula: see text] has no isolated vertices and (C3) The induced subgraph with vertex set [Formula: see text] is independent. For a graph [Formula: see text], the smallest possible weight of an OITRDF of [Formula: see text] which is denoted by [Formula: see text], is known as the outer-independent total Roman domination number of [Formula: see text]. The problem of determining [Formula: see text] of a graph [Formula: see text] is called minimum outer-independent total Roman domination problem (MOITRDP). In this article, we show that the problem of deciding if [Formula: see text] has an OITRDF of weight at most [Formula: see text] for bipartite graphs and split graphs, a subclass of chordal graphs is NP-complete. We also show that MOITRDP is linear time solvable for connected threshold graphs and bounded treewidth graphs. Finally, we show that the domination and outer-independent total Roman domination problems are not equivalent in computational complexity aspects.


Author(s):  
P. Roushini Leely Pushpam ◽  
B. Mahavir ◽  
M. Kamalam

Let [Formula: see text] be a graph and [Formula: see text] be a Roman dominating function defined on [Formula: see text]. Let [Formula: see text] be some ordering of the vertices of [Formula: see text]. For any [Formula: see text], [Formula: see text] is defined by [Formula: see text]. If for all [Formula: see text], [Formula: see text], we have [Formula: see text], that is [Formula: see text], for some [Formula: see text], then [Formula: see text] is called a resolving Roman dominating function (RDF) on [Formula: see text]. The weight of a resolving RDF [Formula: see text] on [Formula: see text] is [Formula: see text]. The minimum weight of a resolving RDF on [Formula: see text] is called the resolving Roman domination number of [Formula: see text] and is denoted by [Formula: see text]. A resolving RDF on [Formula: see text] with weight [Formula: see text] is called a [Formula: see text]-function on [Formula: see text]. In this paper, we find the resolving Roman domination number of certain well-known classes of graphs. We also categorize the class of graphs whose resolving Roman domination number equals their order.


2020 ◽  
Vol 12 (02) ◽  
pp. 2050020
Author(s):  
S. Nazari-Moghaddam ◽  
L. Volkmann

A double Roman dominating function (DRDF) on a graph [Formula: see text] is a function [Formula: see text] such that (i) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least two vertices assigned a [Formula: see text] or to at least one vertex assigned a [Formula: see text] and (ii) every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text] The weight of a DRDF is the sum of its function values over all vertices. The double Roman domination number [Formula: see text] equals the minimum weight of a DRDF on [Formula: see text] The concept of criticality with respect to various operations on graphs has been studied for several domination parameters. In this paper, we study the concept of criticality for double Roman domination in graphs. In addition, we characterize double Roman domination edge super critical graphs and we will give several characterizations for double Roman domination vertex (edge) critical graphs.


Author(s):  
S. Anandha Prabhavathy

A Majority Roman Dominating Function (MRDF) on a graph [Formula: see text] is a function [Formula: see text] satisfying the conditions that (i) the sum of its function values over at least half the closed neighborhood is at least one and (ii) every vertex [Formula: see text] for which [Formula: see text] is adjacent to at least one vertex [Formula: see text] for which [Formula: see text]. The weight of a MRDF is the sum of its function values over all vertices. The Majority Roman Domination Number of a graph [Formula: see text], denoted by [Formula: see text], is defined as [Formula: see text]. In this paper, we initiate the study of Majority Roman Domination in Graphs.


2017 ◽  
Vol 48 (2) ◽  
pp. 135-147 ◽  
Author(s):  
Seyed Mahmoud Sheikholeslami ◽  
Rana Khoeilar ◽  
Leila Asgharsharghi

Let $G=(V,E)$ be a finite and simple graph of order $n$ and maximum degree $\Delta$. A signed strong Roman dominating function (abbreviated SStRDF) on a graph $G$ is a function $f:V\to \{-1,1,2,\ldots,\lceil\frac{\Delta}{2}\rceil+1\}$ satisfying the conditions that (i) for every vertex $v$ of $G$, $\sum_{u\in N[v]} f(u)\ge 1$, where $N[v]$ is the closed neighborhood of $v$ and (ii) every vertex $v$ for which $f(v)=-1$ is adjacent to at least one vertex $u$ for which $f(u)\ge 1+\lceil\frac{1}{2}|N(u)\cap V_{-1}|\rceil$, where $V_{-1}=\{v\in V \mid f(v)=-1\}$. The minimum of the values $\sum_{v\in V} f(v)$, taken over all signed strong Roman dominating functions $f$ of $G$, is called the signed strong Roman domination number of $G$ and is denoted by $\gamma_{ssR}(G)$. In this paper we initiate the study of the signed strong Roman domination in graphs and present some (sharp) bounds for this parameter.


Author(s):  
Hossein Abdollahzadeh Ahangar ◽  
Jafar Amjadi ◽  
Mustapha Chellali ◽  
S. Kosari ◽  
Vladimir Samodivkin ◽  
...  

Let $G=(V,E)$ be a simple graph with vertex set $V$ and edge set $E$. A mixed Roman dominating function (MRDF) of $G$ is a function $f:V\cup E\rightarrow \{0,1,2\}$ satisfying the condition that every element $x\in V\cup E$ for which $f(x)=0$ is adjacent or incident to at least one element $% y\in V\cup E$ for which $f(y)=2$. The weight of a mixed Roman dominating function $f$ is $\omega (f)=\sum_{x\in V\cup E}f(x)$. The mixed Roman domination number $\gamma _{R}^{\ast }(G)$ of $G$ is the minimum weight of a mixed Roman dominating function of $G$. We first show that the problem of computing $\gamma _{R}^{\ast }(G)$ is NP-complete for bipartite graphs and then we present upper and lower bounds on the mixed Roman domination number, some of them are for the class of trees.


Author(s):  
Amit Sharma ◽  
Jakkepalli Pavan Kumar ◽  
P. Venkata Subba Reddy ◽  
S. Arumugam

Let [Formula: see text] be a connected graph. A function [Formula: see text] is called a Roman dominating function if every vertex [Formula: see text] with [Formula: see text] is adjacent to a vertex [Formula: see text] with [Formula: see text]. If further the set [Formula: see text] is an independent set, then [Formula: see text] is called an outer independent Roman dominating function (OIRDF). Let [Formula: see text] and [Formula: see text]. Then [Formula: see text] is called the outer independent Roman domination number of [Formula: see text]. In this paper, we prove that the decision problem for [Formula: see text] is NP-complete for chordal graphs. We also show that [Formula: see text] is linear time solvable for threshold graphs and bounded tree width graphs. Moreover, we show that the domination and outer independent Roman domination problems are not equivalent in computational complexity aspects.


2016 ◽  
Vol 08 (03) ◽  
pp. 1650049 ◽  
Author(s):  
Vladimir Samodivkin

For a graph [Formula: see text], a Roman dominating function (RDF) [Formula: see text] has the property that every vertex [Formula: see text] with [Formula: see text] has a neighbor [Formula: see text] with [Formula: see text]. The weight of a RDF [Formula: see text] is the sum [Formula: see text], and the minimum weight of a RDF on [Formula: see text] is the Roman domination number [Formula: see text] of [Formula: see text]. The Roman bondage number [Formula: see text] of [Formula: see text] is the minimum cardinality of all sets [Formula: see text] for which [Formula: see text]. A graph [Formula: see text] is in the class [Formula: see text] if the Roman domination number remains unchanged when a vertex is deleted. In this paper, we obtain tight upper bounds for [Formula: see text] and [Formula: see text] provided a graph [Formula: see text] is in [Formula: see text]. We present necessary and sufficient conditions for a tree to be in the class [Formula: see text]. We give a constructive characterization of [Formula: see text]-trees using labelings.


Author(s):  
Zehui Shao ◽  
Saeed Kosari ◽  
Hadi Rahbani ◽  
Mehdi Sharifzadeh ◽  
Seyed Mahmoud Sheikholeslami

A Roman dominating function (RD-function) on a graph $G = (V, E)$ is a function $f: V \longrightarrow \{0, 1, 2\}$ satisfying the condition that every vertex $u$ for which $f(u) = 0$ is adjacent to at least one vertex $v$ for which $f(v) = 2$. An Roman dominating function $f$ in a graph $G$ is perfect Roman dominating function (PRD-function) if  every vertex $u$ with $f(u) = 0$ is adjacent to exactly one vertex  $v$ for which $f(v) = 2$. The (perfect) Roman domination number $\gamma_R(G)$ ($\gamma_{R}^{p}(G)$) is the minimum weight of an (perfect) Roman dominating function on $G$.  We say that $\gamma_{R}^{p}(G)$ strongly equals $\gamma_R(G)$, denoted by $\gamma_{R}^{p}(G)\equiv \gamma_R(G)$, if every RD-function on $G$ of minimum weight is a PRD-function. In this paper we  show that for a given graph $G$, it is NP-hard to decide whether $\gamma_{R}^{p}(G)= \gamma_R(G)$ and also we provide a constructive characterization of trees $T$ with $\gamma_{R}^{p}(T)\equiv \gamma_R(T)$.


Author(s):  
Davood Bakhshesh

Let [Formula: see text] be a graph with the vertex set [Formula: see text]. A function [Formula: see text] is called a Roman dominating function of [Formula: see text], if every vertex [Formula: see text] with [Formula: see text] is adjacent to at least one vertex [Formula: see text] with [Formula: see text]. The weight of a Roman dominating function [Formula: see text] is equal to [Formula: see text]. The minimum weight of a Roman dominating function of [Formula: see text] is called the Roman domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we initiate the study of a variant of Roman dominating functions. A function [Formula: see text] is called an isolate Roman dominating function of [Formula: see text], if [Formula: see text] is a Roman dominating function and there is a vertex [Formula: see text] with [Formula: see text] which is not adjacent to any vertex [Formula: see text] with [Formula: see text]. The minimum weight of an isolate Roman dominating function of [Formula: see text] is called the isolate Roman domination number of [Formula: see text], denoted by [Formula: see text]. We present some upper bound on the isolate Roman domination number of a graph [Formula: see text] in terms of its Roman domination number and its domination number. Moreover, we present some classes of graphs [Formula: see text] with [Formula: see text]. Finally, we show that the decision problem associated with the isolate Roman dominating functions is NP-complete for bipartite graphs and chordal graphs.


Sign in / Sign up

Export Citation Format

Share Document