A fast finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction–diffusion equation

Author(s):  
Yaping Zhang ◽  
Jiliang Cao ◽  
Weiping Bu ◽  
Aiguo Xiao

In this work, we develop a finite difference/finite element method for the two-dimensional distributed-order time-space fractional reaction–diffusion equation (2D-DOTSFRDE) with low regularity solution at the initial time. A fast evaluation of the distributed-order time fractional derivative based on graded time mesh is obtained by substituting the weak singular kernel for the sum-of-exponentials. The stability and convergence of the developed semi-discrete scheme to 2D-DOTSFRDE are discussed. For the spatial approximation, the finite element method is employed. The convergence of the corresponding fully discrete scheme is investigated. Finally, some numerical tests are given to verify the obtained theoretical results and to demonstrate the effectiveness of the method.

Author(s):  
Mohammad Ramezani

AbstractThe main propose of this paper is presenting an efficient numerical scheme to solve WSGD scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation. The proposed method is based on fractional B-spline basics in collocation method which involve Caputo-type fractional derivatives for $$0 < \alpha < 1$$ 0 < α < 1 . The most significant privilege of proposed method is efficient and quite accurate and it requires relatively less computational work. The solution of consideration problem is transmute to the solution of the linear system of algebraic equations which can be solved by a suitable numerical method. The finally, several numerical WSGD Scheme for one- and two-dimensional distributed order fractional reaction–diffusion equation.


Sign in / Sign up

Export Citation Format

Share Document