Chaos detection in SIR model with modified Beddington-De Angelis type incidence rate and saturated treatment

Author(s):  
Shikha Jain ◽  
Sachin Kumar
2018 ◽  
Vol 23 (5) ◽  
pp. 619-641
Author(s):  
Hongzheng Quana ◽  
Xueyong Zhoub ◽  
Jianzhou Liua

In this paper, we consider a cholera model with periodic incidence rate and saturated treatment function. Under certain conditions, we establish a criterion on the global exponential stability of positive periodic solutions for this model by using a novel method. We illustrate our theoretical results with numerical simulations by using Matlab.


2019 ◽  
Vol 4 (1) ◽  
pp. 201
Author(s):  
A A Ayoade ◽  
O J Peter ◽  
T A Ayoola ◽  
S Amadiegwu ◽  
A A Victor

Rabies is a viral disease that claims about 59 000 lives globally every year. The ignorance of the fact that man can be a carrier of the disease makes every practical and theoretical approach towards the study of the disease a good development. In this work, a mathematical model is designed to incorporate a saturated incidence rate such that the incidence rate is saturated around the infectious agents. The model is studied qualitatively via stability theory of nonlinear differential equations to assess the effects of general awareness, constant vaccination and the saturated treatment on the transmission dynamics of rabies disease. The effective reproduction number is derived and the numerical simulation is carried out to verify the analytical results. It is discovered that while general awareness plays pivotal roles in averting rabies death, multiple control measures have the tendency of driving rabies to extinction.


Author(s):  
Jayanta Kumar Ghosh ◽  
Prahlad Majumdar ◽  
Uttam Ghosh

This paper describes an SIR model with logistic growth rate of susceptible population, non-monotonic incidence rate and saturated treatment rate. The existence and stability analysis of equilibria have been investigated. It has been shown that the disease free equilibrium point ( DFE ) is globally asymptotically stable if the basic reproduction number is less than unity and the transmission rate of infection less than some threshold. The system exhibits the transcritical bifurcation at DFE with respect to the cure rate. We have also found the condition for occurring the backward bifurcation, which implies the value of basic reproduction number less than unity is not enough to eradicate the disease. Stability or instability of different endemic equilibria has been shown analytically. The system also experiences the saddle-node and Hopf bifurcation. The existence of Bogdanov - Takens bifurcation ( BT ) of co-dimension 2 has been investigated which has also been shown through numerical simulations. Here we have used two control functions, one is vaccination control and other is treatment control. We have solved the optimal control problem both analytically and numerically. Finally, the efficiency analysis has been used to determine the best control strategy among vaccination and treatment.


2013 ◽  
Vol 04 (10) ◽  
pp. 60-67 ◽  
Author(s):  
Wanwan Wang ◽  
Maoxing Liu ◽  
Jinqing Zhao

Sign in / Sign up

Export Citation Format

Share Document