scholarly journals MEASURING MAGNETIC FIELD OF NEUTRON STAR 4U 0115+63 WITH CYCLOTRON FEATURES

2013 ◽  
Vol 23 ◽  
pp. 161-164
Author(s):  
SU YAO ◽  
CHENGMIN ZHANG

We analyze the 3-80 keV spectrum of X-ray pulsar 4U 0115+63 taken by Rossi X-ray Timing Explorer(RXTE) on April 22nd, 2008. Two absorption features at ~13.5 keV and ~20.5 keV are detected by using cyclotron scattering feature profiles to fit the spectrum, ignoring the inadequate photons of the analyzed data. The fundamental feature is just right between ~11 and ~16 keV. It seems implausible to interprete these absorption lines as cyclotron features because of their inharmonic behavior, even when relativistic effect has been taken into account. But it is possible that the main region where first harmonic line forms is slightly different from the fundamental one.

Nature ◽  
2003 ◽  
Vol 423 (6941) ◽  
pp. 725-727 ◽  
Author(s):  
G. F. Bignami ◽  
P. A. Caraveo ◽  
A. De Luca ◽  
S. Mereghetti

2020 ◽  
Author(s):  
Sergio Campana

Abstract The solid crust constituting the outer layers of a hot neutron star is wrapped by an mm-to-cm thin atmosphere. Even if the atmosphere is so thin, it substantially affects the blackbody spectrum emitted by the surface, resulting in an overall hardening of the emitted spectrum. The composition of the atmosphere has so far remained elusive. Several narrow absorption features have been detected and interpreted as arising from proton (or electron) resonant cyclotron absorption in the neutron star magnetic field. Apart from these, for a Hydrogen atmosphere no spectral features are expected, whereas when it is polluted with metals, absorption features start appearing in soft X-ray spectra. Absorption edges and features have been possibly observed during thermonuclear explosions onto the neutron star surface. Isolated neutron stars represent a breeding ground where to look for absorption features, thanks to their simple X-ray spectra. Here we report on the detection of redshifted Nitrogen and Oxygen absorption features from the closest and brightest isolated neutron star. The lines are ~50 eV wide and their intensity is incompatible from originating in the interstellar path to the neutron star. Lines are redshifted by a common gravitational redshift of z_g=0.216±0.004.


1977 ◽  
Vol 43 ◽  
pp. 34-34
Author(s):  
W. Pietsch ◽  
C. Reppin ◽  
R. Staubert ◽  
J. Truemper ◽  
W. Voges ◽  
...  

A four hour balloon observation of HERC X-l during the 'On-state' in the 35 day cycle was performed on May 3rd, 1976. The 1.24 second pulsations show a pulsed fraction of 58 ± 8% in the 18-31 KeV interval. A pulsed flux (1.24 sec) was discovered in the 31-88 KeV interval with a pulsed fraction of 51 ± 14%. The spectrum of the pulsed flux can be represented up to 50 KeV by an exponential distribution with KT approximately 8 KeV. At approximately 58 KeV a strong and narrow line feature occurs which we interpret as electron cyclotron emission (ΔN = 1 Landau transition) from the polar cap plasma of the rotating neutron star. The corresponding magnetic field strength is approximately 5 x 1012 Gauss, neglecting gravitational red shift. There is evidence for a second harmonic at approximately 110 KeV (ΔN = 2 ).The astrophysical application of this discovery will be discussed in some detail.


2020 ◽  
Vol 494 (1) ◽  
pp. 44-49 ◽  
Author(s):  
Wynn C G Ho ◽  
M J P Wijngaarden ◽  
Nils Andersson ◽  
Thomas M Tauris ◽  
F Haberl

ABSTRACT The application of standard accretion theory to observations of X-ray binaries provides valuable insights into neutron star (NS) properties, such as their spin period and magnetic field. However, most studies concentrate on relatively old systems, where the NS is in its late propeller, accretor, or nearly spin equilibrium phase. Here, we use an analytic model from standard accretion theory to illustrate the evolution of high-mass X-ray binaries (HMXBs) early in their life. We show that a young NS is unlikely to be an accretor because of the long duration of ejector and propeller phases. We apply the model to the recently discovered ∼4000 yr old HMXB XMMU J051342.6−672412 and find that the system’s NS, with a tentative spin period of 4.4 s, cannot be in the accretor phase and has a magnetic field B > a few × 1013 G, which is comparable to the magnetic field of many older HMXBs and is much higher than the spin equilibrium inferred value of a few × 1011 G. The observed X-ray luminosity could be the result of thermal emission from a young cooling magnetic NS or a small amount of accretion that can occur in the propeller phase.


2018 ◽  
Vol 14 (S346) ◽  
pp. 193-196
Author(s):  
Swetlana Hubrig ◽  
Lara Sidoli ◽  
Konstantin A. Postnov ◽  
Markus Schöller ◽  
Alexander F. Kholtygin ◽  
...  

Abstract. A fraction of high-mass X-ray binaries are supergiant fast X-ray transients. These systems have on average low X-ray luminosities, but display short flares during which their X-ray luminosity rises by a few orders of magnitude. The leading model for the physics governing this X-ray behaviour suggests that the winds of the donor OB supergiants are magnetized. In agreement with this model, the first spectropolarimetric observations of the SFXT IGR J11215-5952 using the FORS 2 instrument at the Very Large Telescope indicate the presence of a kG longitudinal magnetic field. Based on these results, it seems possible that the key difference between supergiant fast X-ray transients and other high-mass X-ray binaries are the properties of the supergiant’s stellar wind and the physics of the wind’s interaction with the neutron star magnetosphere.


2002 ◽  
Vol 574 (1) ◽  
pp. L61-L64 ◽  
Author(s):  
D. Sanwal ◽  
G. G. Pavlov ◽  
V. E. Zavlin ◽  
M. A. Teter

2012 ◽  
Vol 8 (S290) ◽  
pp. 203-204
Author(s):  
Guoqiang Ding ◽  
Chunping Huang ◽  
Yanan Wang

AbstractFrom the extreme position of disk motion, we infer the neutron star (NS) surface magnetic field strength (B0) of Z-source GX 17+2 and Cyg X-2. The inferred B0 of GX 17+2 and Cyg X-2 are ~(1–5)×108 G and ~(1–3)×108 G, respectively, which are not inferior to that of millisecond X-ray pulsars or atoll sources. It is likely that the NS magnetic axis of Z sources is parallel to the axis of rotation, which could result in the lack of pulsations in these sources.


Sign in / Sign up

Export Citation Format

Share Document