scholarly journals THE JEM-EUSO MISSION: OBSERVATION OF ULTRA-HIGH ENERGY COSMIC RAYS FROM SPACE

2013 ◽  
Vol 23 ◽  
pp. 329-334
Author(s):  
◽  
M. RICCI

The Extreme Universe Space Observatory on Japanese Experiment Module (JEM-EUSO) is a science mission planned to be launched in 2017 to the International Space Station (ISS) to investigate the nature and origin of Ultra High Energy Cosmic Rays (UHECR) beyond energy 3 × 1019 eV. JEM-EUSO is a wide-angle telescope (60 degrees full field of view) and consists of a high-transmittance Fresnel lenses 2.5 m in diameter, an advanced photo-sensitive detector at the focal surface and a suitable electronics. An infrared camera and a LIDAR system will also be used to monitor the Earth's atmosphere and provide significant information on cloud coverage. The present status of advancement of the mission is reported.

2020 ◽  
Vol 29 (1) ◽  
pp. 40-46
Author(s):  
Dmitri L. Khokhlov

AbstractThe studied conjecture is that ultra high energy cosmic rays (UHECRs) are hypothetical Planck neutrinos arising in the decay of the protons falling onto the gravastar. The proton is assumed to decay at the Planck scale into positron and four Planck neutrinos. The supermassive black holes inside active galactic nuclei, while interpreted as gravastars, are considered as UHECR sources. The scattering of the Planck neutrinos by the proton at the Planck scale is considered. The Planck neutrinos contribution to the CR events may explain the CR spectrum from 5 × 1018 eV to 1020 eV. The muon number in the Planck neutrinos-initiated shower is estimated to be larger by a factor of 3/2 in comparison with the standard model that is consistent with the observational data.


2011 ◽  
Vol 20 (supp02) ◽  
pp. 50-56
Author(s):  
◽  
PETER SCHIFFER

The Pierre Auger Observatory is the world's largest experiment for the measurement of ultra-high energy cosmic rays (UHECRs). These UHECRs are assumed to be to be charged particles, and thus are deflected in cosmic magnetic fields. Recent results of the Pierre Auger Observatory addressing the complex of energy ordering of the UHECRs arrival directions are reviewed in this contribution. So far no significant energy ordering has been observed.


2019 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Sergey Ostapchenko

The differences between contemporary Monte Carlo generators of high energy hadronic interactions are discussed and their impact on the interpretation of experimental data on ultra-high energy cosmic rays (UHECRs) is studied. Key directions for further model improvements are outlined. The prospect for a coherent interpretation of the data in terms of the UHECR composition is investigated.


2004 ◽  
Vol 136 ◽  
pp. 159-168 ◽  
Author(s):  
M. Ave ◽  
N. Busca ◽  
A.V. Olinto ◽  
A.A. Watson ◽  
T. Yamamoto

Sign in / Sign up

Export Citation Format

Share Document