Monte Carlo simulation of gamma-ray interactions in an over-square high-purity germanium detector for in-vivo measurements

2016 ◽  
Vol 44 ◽  
pp. 1660225
Author(s):  
Mirela Angela Saizu

The developments of high-purity germanium detectors match very well the requirements of the in-vivo human body measurements regarding the gamma energy ranges of the radionuclides intended to be measured, the shape of the extended radioactive sources, and the measurement geometries. The Whole Body Counter (WBC) from IFIN-HH is based on an “over-square” high-purity germanium detector (HPGe) to perform accurate measurements of the incorporated radionuclides emitting X and gamma rays in the energy range of 10 keV–1500 keV, under conditions of good shielding, suitable collimation, and calibration. As an alternative to the experimental efficiency calibration method consisting of using reference calibration sources with gamma energy lines that cover all the considered energy range, it is proposed to use the Monte Carlo method for the efficiency calibration of the WBC using the radiation transport code MCNP5. The HPGe detector was modelled and the gamma energy lines of [Formula: see text]Am, [Formula: see text]Co, [Formula: see text]Ba, [Formula: see text]Cs, [Formula: see text]Co, and [Formula: see text]Eu were simulated in order to obtain the virtual efficiency calibration curve of the WBC. The Monte Carlo method was validated by comparing the simulated results with the experimental measurements using point-like sources. For their optimum matching, the impact of the variation of the front dead layer thickness and of the detector photon absorbing layers materials on the HPGe detector efficiency was studied, and the detector’s model was refined. In order to perform the WBC efficiency calibration for realistic people monitoring, more numerical calculations were generated simulating extended sources of specific shape according to the standard man characteristics.

2022 ◽  
Vol 2155 (1) ◽  
pp. 012020
Author(s):  
I V Prozorova

Abstract A standard procedure for characterizing the high-purity germanium detector (HPGe), manufactured by Canberra Industries Inc [1], is performed directly by the company using patented methods. However, the procedure is usually expensive and must be repeated because the characteristics of the HPGe crystal change over time. In this work, the principles of a technique are developed for use in obtaining and optimizing the detector characteristics based on a cost-effective procedure in a standard research laboratory. The technique requires that the detector geometric parameters are determined with maximum accuracy by the Monte Carlo method [2] in parallel with the optimization based on evolutionary algorithms. The development of this approach facilitates modeling of the HPGe detector as a standardized procedure. The results will be also beneficial in the development of gamma spectrometers and/or their calibrations before routine measurements.


2002 ◽  
Vol 20 (2) ◽  
pp. 161-170 ◽  
Author(s):  
Ita O. B. Ewa ◽  
Denes Bodizes ◽  
Szaboles Czifrus ◽  
Marta Balla ◽  
Zsuzsa Molnar

Author(s):  
Irina A. Matveeva ◽  
Oleg O. Myakinin ◽  
Vseslav O. Vinokurov ◽  
Yulia A. Khristoforova ◽  
Ivan A. Bratchenko ◽  
...  

The paper is devoted to additive simulation of Raman light scattering by skin cancer using the Monte Carlo method. Raman light scattering from normal skin, malignant melanoma and basal cell carcinoma is investigated. Based on the photon transport algorithm proposed by L. Wang and S. L. Jacques, a two-stage algorithm for simulating Raman light scattering from skin has been developed. A method for additive modeling of skin pathologies is proposed. The main idea of this method is a hypothesis that an experimental Raman spectrum of normal skin, obtained by averaging in vivo Raman spectra of normal skin, may be served as a “substrate” for the feature simulated Raman spectrum. Thus, the pathology, for their part, may be “grown” by adding on this “substrate” Raman specific components set related to a tumor type. Additive simulation of malignant melanoma on various stages and basal cell carcinoma has been carried out. The possibility of using the developed algorithm to determine the component composition of the skin by the in vivo Raman spectrum of skin is discussed. An attempt to evaluate the change in the concentration of skin components during the development of cancer has been made.


ANRI ◽  
2020 ◽  
Vol 0 (4) ◽  
pp. 14-28
Author(s):  
Aliaksei Zaharadniuk ◽  
Roman Lukashevich ◽  
Konstantin Syankovsky ◽  
Aleksandr Novichenko

The paper considers an improved method for correcting the instrumental spectrum of a high purity germanium detector (HPGe detector) in the energy range (10–300 keV). The method uses a detector response matrix obtained by the Monte Carlo method, which allows to bring the appearance of the instrumental spectrum of the HPGe detector closer to its true shape by minimizing the influence of the detector response function. The main difference of this method from analogs is the additional deconvolution algorithm of the corrected spectrum, which makes it possible to obtain a smooth curve at the output.


Sign in / Sign up

Export Citation Format

Share Document