true shape
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 15)

H-INDEX

9
(FIVE YEARS 2)

2021 ◽  
Vol 386 ◽  
pp. 144-153
Author(s):  
Jacob Mortensen ◽  
Joachim Faldt Faurholt ◽  
Emil Hovad ◽  
Jens Honoré Walther

2021 ◽  
Vol 7 ◽  
pp. e542
Author(s):  
Todd C. Pataky ◽  
Masahide Yagi ◽  
Noriaki Ichihashi ◽  
Philip G. Cox

This paper proposes a computational framework for automated, landmark-free hypothesis testing of 2D contour shapes (i.e., shape outlines), and implements one realization of that framework. The proposed framework consists of point set registration, point correspondence determination, and parametric full-shape hypothesis testing. The results are calculated quickly (<2 s), yield morphologically rich detail in an easy-to-understand visualization, and are complimented by parametrically (or nonparametrically) calculated probability values. These probability values represent the likelihood that, in the absence of a true shape effect, smooth, random Gaussian shape changes would yield an effect as large as the observed one. This proposed framework nevertheless possesses a number of limitations, including sensitivity to algorithm parameters. As a number of algorithms and algorithm parameters could be substituted at each stage in the proposed data processing chain, sensitivity analysis would be necessary for robust statistical conclusions. In this paper, the proposed technique is applied to nine public datasets using a two-sample design, and an ANCOVA design is then applied to a synthetic dataset to demonstrate how the proposed method generalizes to the family of classical hypothesis tests. Extension to the analysis of 3D shapes is discussed.


ANRI ◽  
2020 ◽  
Vol 0 (4) ◽  
pp. 14-28
Author(s):  
Aliaksei Zaharadniuk ◽  
Roman Lukashevich ◽  
Konstantin Syankovsky ◽  
Aleksandr Novichenko

The paper considers an improved method for correcting the instrumental spectrum of a high purity germanium detector (HPGe detector) in the energy range (10–300 keV). The method uses a detector response matrix obtained by the Monte Carlo method, which allows to bring the appearance of the instrumental spectrum of the HPGe detector closer to its true shape by minimizing the influence of the detector response function. The main difference of this method from analogs is the additional deconvolution algorithm of the corrected spectrum, which makes it possible to obtain a smooth curve at the output.


Ocean Science ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1367-1383
Author(s):  
Hyunggu Jun ◽  
Hyeong-Tae Jou ◽  
Chung-Ho Kim ◽  
Sang Hoon Lee ◽  
Han-Joon Kim

Abstract. Seismic oceanography (SO) acquires water column reflections using controlled source seismology and provides high lateral resolution that enables the tracking of the thermohaline structure of the oceans. Most SO studies obtain data using air guns, which can produce acoustic energy below 100 Hz bandwidth, with vertical resolution of approximately 10 m or more. For higher-frequency bands, with vertical resolution ranging from several centimeters to several meters, a smaller, low-cost seismic exploration system may be used, such as a sparker source with central frequencies of 250 Hz or higher. However, the sparker source has a relatively low energy compared to air guns and consequently produces data with a lower signal-to-noise (S∕N) ratio. To attenuate the random noise and extract reliable signal from the low S∕N ratio of sparker SO data without distorting the true shape and amplitude of water column reflections, we applied machine learning. Specifically, we used a denoising convolutional neural network (DnCNN) that efficiently suppresses random noise in a natural image. One of the most important factors of machine learning is the generation of an appropriate training dataset. We generated two different training datasets using synthetic and field data. Models trained with the different training datasets were applied to the test data, and the denoised results were quantitatively compared. To demonstrate the technique, the trained models were applied to an SO sparker seismic dataset acquired in the Ulleung Basin, East Sea (Sea of Japan), and the denoised seismic sections were evaluated. The results show that machine learning can successfully attenuate the random noise in sparker water column seismic reflection data.


2020 ◽  
Vol 59 ◽  
pp. 279-286
Author(s):  
Tommy Grankäll ◽  
Per Hallander ◽  
Mikael Petersson ◽  
Malin Åkermo
Keyword(s):  

Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2319 ◽  
Author(s):  
David González ◽  
Alberto García-González ◽  
Francisco Chinesta ◽  
Elías Cueto

We address the problem of machine learning of constitutive laws when large experimental deviations are present. This is particularly important in soft living tissue modeling, for instance, where large patient-dependent data is found. We focus on two aspects that complicate the problem, namely, the presence of an important dispersion in the experimental results and the need for a rigorous compliance to thermodynamic settings. To address these difficulties, we propose to use, respectively, Topological Data Analysis techniques and a regression over the so-called General Equation for the Nonequilibrium Reversible-Irreversible Coupling (GENERIC) formalism (M. Grmela and H. Ch. Oettinger, Dynamics and thermodynamics of complex fluids. I. Development of a general formalism. Phys. Rev. E 56, 6620, 1997). This allows us, on one hand, to unveil the true “shape” of the data and, on the other, to guarantee the fulfillment of basic principles such as the conservation of energy and the production of entropy as a consequence of viscous dissipation. Examples are provided over pseudo-experimental and experimental data that demonstrate the feasibility of the proposed approach.


Author(s):  
Bardia Konh ◽  
Zolboo Batsaikhan ◽  
Blayton Padasdao

Abstract This work presents a method to estimate 3D shape of an active needle inside tissue using 2D transverse ultrasound images. The shape of the needle provides a valuable feedback information for precise control and guidance of the needle inside tissue toward target. We used a series of image processing techniques to identify the needle’s cross section in the ultrasound images. Using this method, we estimated the 3D shape of a tendon-driven active needle, when bent inside a transparent phantom tissue using a robotic needle insertion system. The estimated shape of the needle was then compared with true shape of the needle captured by two cameras. At least three ultrasound images were required to estimate the needle shape with a second order polynomial function. We found an average error of 0.54mm and a maximum error of 1.00mm in shape estimation compared to the true shape of the needle captured by the cameras for an insertion depth of 70mm.


2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Long Chen ◽  
Fengfeng Zhang ◽  
Wei Zhan ◽  
Minfeng Gan ◽  
Lining Sun

Abstract Background The traditional navigation interface was intended only for two-dimensional observation by doctors; thus, this interface does not display the total spatial information for the lesion area. Surgical navigation systems have become essential tools that enable for doctors to accurately and safely perform complex operations. The image navigation interface is separated from the operating area, and the doctor needs to switch the field of vision between the screen and the patient’s lesion area. In this paper, augmented reality (AR) technology was applied to spinal surgery to provide more intuitive information to surgeons. The accuracy of virtual and real registration was improved via research on AR technology. During the operation, the doctor could observe the AR image and the true shape of the internal spine through the skin. Methods To improve the accuracy of virtual and real registration, a virtual and real registration technique based on an improved identification method and robot-assisted method was proposed. The experimental method was optimized by using the improved identification method. X-ray images were used to verify the effectiveness of the puncture performed by the robot. Results The final experimental results show that the average accuracy of the virtual and real registration based on the general identification method was 9.73 ± 0.46 mm (range 8.90–10.23 mm). The average accuracy of the virtual and real registration based on the improved identification method was 3.54 ± 0.13 mm (range 3.36–3.73 mm). Compared with the virtual and real registration based on the general identification method, the accuracy was improved by approximately 65%. The highest accuracy of the virtual and real registration based on the robot-assisted method was 2.39 mm. The accuracy was improved by approximately 28.5% based on the improved identification method. Conclusion The experimental results show that the two optimized methods are highly very effective. The proposed AR navigation system has high accuracy and stability. This system may have value in future spinal surgeries.


Sign in / Sign up

Export Citation Format

Share Document