scholarly journals Fine asymptotics for models with Gamma type moments

2019 ◽  
Vol 10 (01) ◽  
pp. 2150007
Author(s):  
Peter Eichelsbacher ◽  
Lukas Knichel

The aim of this paper is to give fine asymptotics for random variables with moments of Gamma type. Among the examples, we consider random determinants of Laguerre and Jacobi beta ensembles with varying dimensions (the number of observed variables and the number of measurements vary and may be different). In addition to the Dyson threefold way of classical random matrix models (GOE, GUE, GSE), we study random determinants of random matrices of the so-called tenfold way, including the Bogoliubov–de Gennes and chiral ensembles from mesoscopic physics. We show that fixed-trace matrix ensembles can be analyzed as well. Finally, we add fine asymptotics for the [Formula: see text]-dimensional volume of the simplex with [Formula: see text] points in [Formula: see text] distributed according to special distributions, which is strongly correlated to Gram matrix ensembles. We use the framework of mod-[Formula: see text] convergence to obtain extended limit theorems, Berry–Esseen bounds, precise moderate deviations, large and moderate deviation principles as well as local limit theorems. The work is especially based on the recent work of Dal Borgo et al. [Mod-Gaussian convergence for random determinants, Ann. Henri Poincaré (2018)].

Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


2020 ◽  
Vol 30 (4) ◽  
pp. 215-241
Author(s):  
Gavriil A. Bakay ◽  
Aleksandr V. Shklyaev

AbstractLet (ξ(i), η(i)) ∈ ℝd+1, 1 ≤ i < ∞, be independent identically distributed random vectors, η(i) be nonnegative random variables, the vector (ξ(1), η(1)) satisfy the Cramer condition. On the base of renewal process, NT = max{k : η(1) + … + η(k) ≤ T} we define the generalized renewal process ZT = $\begin{array}{} \sum_{i=1}^{N_T} \end{array}$ξ(i). Put IΔT(x) = {y ∈ ℝd : xj ≤ yj < xj + ΔT, j = 1, …, d}. We find asymptotic formulas for the probabilities P(ZT ∈ IΔT(x)) as ΔT → 0 and P(ZT = x) in non-lattice and arithmetic cases, respectively, in a wide range of x values, including normal, moderate, and large deviations. The analogous results were obtained for a process with delay in which the distribution of (ξ(1), η(1)) differs from the distribution on the other steps. Using these results, we prove local limit theorems for processes with regeneration and for additive functionals of finite Markov chains, including normal, moderate, and large deviations.


2021 ◽  
Vol 31 (4) ◽  
pp. 293-307
Author(s):  
Aleksandr N. Timashev

Abstract A generalized scheme of allocation of n particles into ordered cells (components). Some statements containing sufficient conditions for the weak convergence of the number of components with given cardinality and of the total number of components to the negative binomial distribution as n → ∞ are presented as hypotheses. Examples supporting the validity of these statements in particular cases are considered. For some examples we prove local limit theorems for the total number of components which partially generalize known results on the convergence of this distribution to the normal law.


Author(s):  
Martina Dal Borgo ◽  
Pierre-Loïc Méliot ◽  
Ashkan Nikeghbali

Sign in / Sign up

Export Citation Format

Share Document