A comparison of option pricing models

2017 ◽  
Vol 04 (02n03) ◽  
pp. 1750024
Author(s):  
Elham Dastranj ◽  
Roghaye Latifi

Option pricing under two stochastic volatility models, double Heston model and double Heston with three jumps, is done. Firstly, the efficiency of the second model is shown via FFT method, and numerical examples using power call options. Then it is shown that power option yields more premium income under the second model, double Heston with three jumps, than another one.

2013 ◽  
Vol 94 ◽  
pp. 55-75 ◽  
Author(s):  
J.L. Fernández ◽  
A.M. Ferreiro ◽  
J.A. García-Rodríguez ◽  
A. Leitao ◽  
J.G. López-Salas ◽  
...  

2017 ◽  
Vol 20 (08) ◽  
pp. 1750055 ◽  
Author(s):  
ZHENYU CUI ◽  
J. LARS KIRKBY ◽  
GUANGHUA LIAN ◽  
DUY NGUYEN

This paper contributes a generic probabilistic method to derive explicit exact probability densities for stochastic volatility models. Our method is based on a novel application of the exponential measure change in [Z. Palmowski & T. Rolski (2002) A technique for exponential change of measure for Markov processes, Bernoulli 8(6), 767–785]. With this generic approach, we first derive explicit probability densities in terms of model parameters for several stochastic volatility models with nonzero correlations, namely the Heston 1993, [Formula: see text], and a special case of the [Formula: see text]-Hypergeometric stochastic volatility models recently proposed by [J. Da Fonseca & C. Martini (2016) The [Formula: see text]-Hypergeometric stochastic volatility model, Stochastic Processes and their Applications 126(5), 1472–1502]. Then, we combine our method with a stochastic time change technique to develop explicit formulae for prices of timer options in the Heston model, the [Formula: see text] model and a special case of the [Formula: see text]-Hypergeometric model.


2010 ◽  
Vol 13 (05) ◽  
pp. 767-787 ◽  
Author(s):  
EMILIO BARUCCI ◽  
MARIA ELVIRA MANCINO

We consider general stochastic volatility models driven by continuous Brownian semimartingales, we show that the volatility of the variance and the leverage component (covariance between the asset price and the variance) can be reconstructed pathwise by exploiting Fourier analysis from the observation of the asset price. Specifying parametrically the asset price model we show that the method allows us to compute the parameters of the model. We provide a Monte Carlo experiment to recover the volatility and correlation parameters of the Heston model.


Sign in / Sign up

Export Citation Format

Share Document