Effects of Weakly Nonlinear Waves on Acoustic Scattering from the Ocean Surface

Author(s):  
Runze Xue ◽  
Rui Duan ◽  
Yuanliang Ma ◽  
Kunde Yang

The elevation of ocean waves is always modeled in linear theory as a superposition of the sinusoidal components with crests and troughs of identical heights. However, under some circumstances, the wave amplitude is outside the linear range and presents as a weakly nonlinear asymmetrical waveform with sharper crests and shallower troughs. We studied the impact of the weakly nonlinear effect of ocean waves in deep and intermediate waters on acoustic scattering from the surface of the ocean using two rough surface models with fractal geometry and power law spectral behavior in the equilibrium range. The classic Weierstrass–Mandelbrot function was used to model the linear waves and a new fractal function, the fractional Weierstrass function developed in studies of electromagnetism, was used to model the weakly nonlinear waves. We evaluated these two models using the Pierson–Moskowitz spectrum and the incident wavelength. The bistatic scattering strength was obtained via a numerical method based on the “exact” solution of the integral equation. The weakly nonlinear phenomenon led to a very small reduction in the narrow area around the specular reflection angle and a small increase in the remaining wide area, including the backpropagation area with a scattering angle [Formula: see text]. The differences in backscattering strength between the two models were similar to the bistatic scattering strength in the backpropagation area and did not depend on the incident grazing angle.

2007 ◽  
Vol 73 (6) ◽  
pp. 933-946
Author(s):  
S. PHIBANCHON ◽  
M. A. ALLEN ◽  
G. ROWLANDS

AbstractWe determine the growth rate of linear instabilities resulting from long-wavelength transverse perturbations applied to periodic nonlinear wave solutions to the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation which governs weakly nonlinear waves in a strongly magnetized cold-ion plasma whose electron distribution is given by two Maxwellians at slightly different temperatures. To obtain the growth rate it is necessary to evaluate non-trivial integrals whose number is kept to a minimum by using recursion relations. It is shown that a key instance of one such relation cannot be used for classes of solution whose minimum value is zero, and an additional integral must be evaluated explicitly instead. The SKdVZK equation contains two nonlinear terms whose ratio b increases as the electron distribution becomes increasingly flat-topped. As b and hence the deviation from electron isothermality increases, it is found that for cnoidal wave solutions that travel faster than long-wavelength linear waves, there is a more pronounced variation of the growth rate with the angle θ at which the perturbation is applied. Solutions whose minimum values are zero and which travel slower than long-wavelength linear waves are found, at first order, to be stable to perpendicular perturbations and have a relatively narrow range of θ for which the first-order growth rate is not zero.


1999 ◽  
Vol 23 (2) ◽  
pp. 253-265
Author(s):  
H. Demiray

In this work, we study the propagation of weakly nonlinear waves in a prestressed thin elastic tube filled with an inviscid fluid. In the analysis, considering the physiological conditions under which the arteries function, the tube is assumed to be subjected to a uniform pressure P0 and a constant axial stretch ratio λz. In the course of blood flow in arteries, it is assumed that a finite time dependent radial displacement is superimposed on this static field but, due to axial tethering, the effect of axial displacement is neglected. The governing nonlinear equation for the radial motion of the tube under the effect of fluid pressure is obtained. Using the exact nonlinear equations of an incompressible inviscid fluid and the reductive perturbation technique, the propagation of weakly nonlinear waves in a fluid-filled thin elastic tube is investigated in the longwave approximation. The governing equation for this special case is obtained as the Korteweg-de-Vries equation. It is shown that, contrary to the result of previous works on the same subject, in the present work, even for Mooney-Rivlin material, it is possible to obtain the nonlinear Korteweg-de-Vries equation.


Sign in / Sign up

Export Citation Format

Share Document