scholarly journals Weakly nonlinear waves in magnetized plasma with a slightly non-Maxwellian electron distribution. Part 2. Stability of cnoidal waves

2007 ◽  
Vol 73 (6) ◽  
pp. 933-946
Author(s):  
S. PHIBANCHON ◽  
M. A. ALLEN ◽  
G. ROWLANDS

AbstractWe determine the growth rate of linear instabilities resulting from long-wavelength transverse perturbations applied to periodic nonlinear wave solutions to the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation which governs weakly nonlinear waves in a strongly magnetized cold-ion plasma whose electron distribution is given by two Maxwellians at slightly different temperatures. To obtain the growth rate it is necessary to evaluate non-trivial integrals whose number is kept to a minimum by using recursion relations. It is shown that a key instance of one such relation cannot be used for classes of solution whose minimum value is zero, and an additional integral must be evaluated explicitly instead. The SKdVZK equation contains two nonlinear terms whose ratio b increases as the electron distribution becomes increasingly flat-topped. As b and hence the deviation from electron isothermality increases, it is found that for cnoidal wave solutions that travel faster than long-wavelength linear waves, there is a more pronounced variation of the growth rate with the angle θ at which the perturbation is applied. Solutions whose minimum values are zero and which travel slower than long-wavelength linear waves are found, at first order, to be stable to perpendicular perturbations and have a relatively narrow range of θ for which the first-order growth rate is not zero.

2007 ◽  
Vol 73 (2) ◽  
pp. 215-229 ◽  
Author(s):  
M.A. ALLEN ◽  
S. PHIBANCHON ◽  
G. ROWLANDS

Abstract.Weakly nonlinear waves in strongly magnetized plasma with slightly non-isothermal electrons are governed by a modified Zakharov–Kuznetsov (ZK) equation, containing both quadratic and half-order nonlinear terms, which we refer to as the Schamel–Korteweg–de Vries–Zakharov–Kuznetsov (SKdVZK) equation. We present a method to obtain an approximation for the growth rate, γ, of sinusoidal perpendicular perturbations of wavenumber, k, to SKdVZK solitary waves over the entire range of instability. Unlike for (modified) ZK equations with one nonlinear term, in this method there is no analytical expression for kc, the cut-off wavenumber (at which the growth rate is zero) or its corresponding eigenfunction. We therefore obtain approximate expressions for these using an expansion parameter, a, related to the ratio of the nonlinear terms. The expressions are then used to find γ for k near kc as a function of a. The approximant derived from combining these analytical results with the ones for small k agrees very well with the values of γ obtained numerically. It is found that both kc and the maximum growth rate decrease as the electron distribution becomes progressively less peaked than the Maxwellian. We also present new algebraic and rarefactive solitary wave solutions to the equation.


2000 ◽  
Vol 64 (4) ◽  
pp. 411-426 ◽  
Author(s):  
S. MUNRO ◽  
E. J. PARKES

In the context of ion-acoustic waves in a magnetized plasma comprising cold ions and non-isothermal electrons, small-amplitude, weakly nonlinear waves have been shown previously by Munro and Parkes to be governed by a modified version of the Zakharov–Kuznetsov equation. In this paper, we consider solitary travelling-wave solutions to this equation that propagate along the magnetic field. We investigate the initial growth rate γ(k) of a small transverse sinusoidal perturbation of wavenumber k. The instability range is shown to be 0 < k < 3. We use the multiple-scale perturbation method developed by Allen and Rowlands to determine a consistent expansion of γ about k = 0 and k = 3. By combining these results in the form of a Padé approximant, an analytical expression for γ is found that is valid for 0 < k < 3. γ is also determined by using the variational method developed by Bettinson and Rowlands. The two results for γ are compared with a numerical determination.


1999 ◽  
Vol 23 (2) ◽  
pp. 253-265
Author(s):  
H. Demiray

In this work, we study the propagation of weakly nonlinear waves in a prestressed thin elastic tube filled with an inviscid fluid. In the analysis, considering the physiological conditions under which the arteries function, the tube is assumed to be subjected to a uniform pressure P0 and a constant axial stretch ratio λz. In the course of blood flow in arteries, it is assumed that a finite time dependent radial displacement is superimposed on this static field but, due to axial tethering, the effect of axial displacement is neglected. The governing nonlinear equation for the radial motion of the tube under the effect of fluid pressure is obtained. Using the exact nonlinear equations of an incompressible inviscid fluid and the reductive perturbation technique, the propagation of weakly nonlinear waves in a fluid-filled thin elastic tube is investigated in the longwave approximation. The governing equation for this special case is obtained as the Korteweg-de-Vries equation. It is shown that, contrary to the result of previous works on the same subject, in the present work, even for Mooney-Rivlin material, it is possible to obtain the nonlinear Korteweg-de-Vries equation.


2013 ◽  
Vol 80 (1) ◽  
pp. 89-112
Author(s):  
Jayasree Das ◽  
Anup Bandyopadhyay ◽  
K. P. Das

AbstractSchamel's modified Korteweg-de Vries–Zakharov–Kuznetsov (S-ZK) equation, governing the behavior of long wavelength, weak nonlinear ion acoustic waves propagating obliquely to an external uniform static magnetic field in a plasma consisting of warm adiabatic ions and non-thermal electrons (due to the presence of fast energetic electrons) having vortex-like velocity distribution function (due to the presence of trapped electrons), immersed in a uniform (space-independent) and static (time-independent) magnetic field, admits solitary wave solutions having a sech4 profile. The higher order stability of this solitary wave solution of the S-ZK equation has been analyzed with the help of multiple-scale perturbation expansion method of Allen and Rowlands (Allen, M. A. and Rowlands, G. 1993 J. Plasma Phys. 50, 413; 1995 J. Plasma Phys. 53, 63). The growth rate of instability is obtained correct to the order k2, where k is the wave number of a long wavelength plane wave perturbation. It is found that the lowest order (at the order k) instability condition is strongly sensitive to the angle of propagation (δ) of the solitary wave with the external uniform static magnetic field, whereas at the next order (at the order k2) the solitary wave solutions of the S-ZK equation are unstable irrespective of δ. It is also found that the growth rate of instability up to the order k2 for the electrons having Boltzmann distribution is higher than that of the non-thermal electrons having vortex-like distribution for any fixed δ.


Sign in / Sign up

Export Citation Format

Share Document