Nonlinear Effect on the Axial Next-Nearest Neighbor Ising (ANNNI) Model: Application to CeSb

1989 ◽  
Vol 58 (4) ◽  
pp. 1296-1306 ◽  
Author(s):  
Kazuo Nakanishi
1997 ◽  
Vol 492 ◽  
Author(s):  
Sukit Llmpijumnong ◽  
Walter R. L. Lambrecht

ABSTRACTThe energy differences between various SiC polytypes are calculated using the full-potential linear muffin-tin orbital method and analyzed in terms of the anisotropie next nearest neighbor interaction (ANNNI) model. The fact that J1 + 2J2 < 0 with J1 > 0 implies that twin boundaries in otherwise cubic material are favorable unless twins occur as nearest neighbor layers. Contrary to some other recent calculations we find J1 > |J2|. We discuss the consequences of this for stabilization of cubic SiC in epitaxial growth, including considerations of the island size effects.


2018 ◽  
Vol 185 ◽  
pp. 11010
Author(s):  
Murtazaev Akai Kurbanovich ◽  
Ibaev Zhavrail Gadzhievich

In this, study we present the data for 2D Axial Next Nearest Neighbor Ising model (ANNNI-model) obtained from Monte Carlo (MC) simulations using the standard Metropolis algorithm. The temperature dependences of thermodynamic parameters for a cubic lattice with linear sizes L=32 at different values of the competing interaction parameter |J1/J|=0.1÷1.0. Transition temperatures of ferromagnetic ordering to the paramagnetic state at |J1/J|<0.3 and to the modulated state at 0.3<|J1/J|<0.5 are shown to shift towards low temperatures with an increase in a competing interaction parameter absolute value. Conversely, transition temperatures of the modulate state to the paramagnetic ordering grow. The modulated ordering in the 2D ANNNImodel appears in the temperature range 0.1<T<2.0 at 0.2<|J1/J|≤1.0. Modulated structure parameters are computed using a mathematic apparatus of Fourier transform spectral analysis. According to the Fourier analysis results, the wave number grows with an increase in the competing interaction parameter absolute value. Summarizing obtained results, we plot a phase diagram of 2D anisotropic Ising model with competing interactions.


Author(s):  
J. M. Oblak ◽  
W. H. Rand

The energy of an a/2 <110> shear antiphase. boundary in the Ll2 expected to be at a minimum on {100} cube planes because here strue ture is there is no violation of nearest-neighbor order. The latter however does involve the disruption of second nearest neighbors. It has been suggested that cross slip of paired a/2 <110> dislocations from octahedral onto cube planes is an important dislocation trapping mechanism in Ni3Al; furthermore, slip traces consistent with cube slip are observed above 920°K.Due to the high energy of the {111} antiphase boundary (> 200 mJ/m2), paired a/2 <110> dislocations are tightly constricted on the octahedral plane and cannot be individually resolved.


Author(s):  
S. R. Herd ◽  
P. Chaudhari

Electron diffraction and direct transmission have been used extensively to study the local atomic arrangement in amorphous solids and in particular Ge. Nearest neighbor distances had been calculated from E.D. profiles and the results have been interpreted in terms of the microcrystalline or the random network models. Direct transmission electron microscopy appears the most direct and accurate method to resolve this issue since the spacial resolution of the better instruments are of the order of 3Å. In particular the tilted beam interference method is used regularly to show fringes corresponding to 1.5 to 3Å lattice planes in crystals as resolution tests.


Sign in / Sign up

Export Citation Format

Share Document