scholarly journals A Note on the Cluster Expansion for Quantum Gases

1964 ◽  
Vol 31 (4) ◽  
pp. 538-552 ◽  
Author(s):  
Hiroshi Ichimura
1967 ◽  
Vol 37 (3) ◽  
pp. 484-501
Author(s):  
Hiroshi Ichimura

1972 ◽  
Vol 48 (6) ◽  
pp. 2144-2170
Author(s):  
Hiroaki Hara ◽  
Hiroshi Ichimura

1968 ◽  
Vol 39 (4) ◽  
pp. 907-928 ◽  
Author(s):  
Hiroaki Hara ◽  
Hiroshi Ichimura ◽  
Tohru Morita

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 514
Author(s):  
David Blaschke ◽  
Kirill A. Devyatyarov ◽  
Olaf Kaczmarek

In this work, we present a unified approach to the thermodynamics of hadron–quark–gluon matter at finite temperatures on the basis of a quark cluster expansion in the form of a generalized Beth–Uhlenbeck approach with a generic ansatz for the hadronic phase shifts that fulfills the Levinson theorem. The change in the composition of the system from a hadron resonance gas to a quark–gluon plasma takes place in the narrow temperature interval of 150–190 MeV, where the Mott dissociation of hadrons is triggered by the dropping quark mass as a result of the restoration of chiral symmetry. The deconfinement of quark and gluon degrees of freedom is regulated by the Polyakov loop variable that signals the breaking of the Z(3) center symmetry of the color SU(3) group of QCD. We suggest a Polyakov-loop quark–gluon plasma model with O(αs) virial correction and solve the stationarity condition of the thermodynamic potential (gap equation) for the Polyakov loop. The resulting pressure is in excellent agreement with lattice QCD simulations up to high temperatures.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 536
Author(s):  
Lingen Chen ◽  
Zewei Meng ◽  
Yanlin Ge ◽  
Feng Wu

An irreversible combined Carnot cycle model using ideal quantum gases as a working medium was studied by using finite-time thermodynamics. The combined cycle consisted of two Carnot sub-cycles in a cascade mode. Considering thermal resistance, internal irreversibility, and heat leakage losses, the power output and thermal efficiency of the irreversible combined Carnot cycle were derived by utilizing the quantum gas state equation. The temperature effect of the working medium on power output and thermal efficiency is analyzed by numerical method, the optimal relationship between power output and thermal efficiency is solved by the Euler-Lagrange equation, and the effects of different working mediums on the optimal power and thermal efficiency performance are also focused. The results show that there is a set of working medium temperatures that makes the power output of the combined cycle be maximum. When there is no heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are parabolic-like ones, and the internal irreversibility makes both power output and efficiency decrease. When there is heat leakage loss in the combined cycle, all the characteristic curves of optimal power versus thermal efficiency are loop-shaped ones, and the heat leakage loss only affects the thermal efficiency of the combined Carnot cycle. Comparing the power output of combined heat engines with four types of working mediums, the two-stage combined Carnot cycle using ideal Fermi-Bose gas as working medium obtains the highest power output.


Sign in / Sign up

Export Citation Format

Share Document