scholarly journals Reynolds-Number Dependence of Fluid Mixing in a Spatially Periodic Three-Dimensional Steady Flow

2006 ◽  
Vol 161 ◽  
pp. 278-281
Author(s):  
Yoshinori Mizuno ◽  
Mitsuaki Funakoshi
1996 ◽  
Vol 328 ◽  
pp. 19-48 ◽  
Author(s):  
E. P. L. Roberts ◽  
M. R. Mackley

We report experimental and numerical observations on the way initially symmetric and time-periodic fluid oscillations in baffled channels develop in complexity. Experiments are carried out in a spatially periodic baffled channel with a sinusoidal oscillatory flow. At modest Reynolds number the observed vortex structure is symmetric and time periodic. At higher values the flow progressively becomes three-dimensional, asymmetric and aperiodic. A two-dimensional simulation of incompressible Newtonian flow is able to follow the flow pattern at modest oscillatory Reynolds number. At higher values we report the development of both asymmetry and a period-doubling cascade leading to a chaotic flow regime. A bifurcation diagram is constructed that can describe the progressive increase in complexity of the flow.


2007 ◽  
Vol 586 ◽  
pp. 59-81 ◽  
Author(s):  
SUSUMU GOTO ◽  
SHIGEO KIDA

The stretching rate, normalized by the reciprocal of the Kolmogorov time, of sufficiently extended material lines and surfaces in statistically stationary homogeneous isotropic turbulence depends on the Reynolds number, in contrast to the conventional picture that the statistics of material object deformation are determined solely by the Kolmogorov-scale eddies. This Reynolds-number dependence of the stretching rate of sufficiently extended material objects is numerically verified both in two- and three-dimensional turbulence, although the normalized stretching rate of infinitesimal material objects is confirmed to be independent of the Reynolds number. These numerical results can be understood from the following three facts. First, the exponentially rapid stretching brings about rapid multiple folding of finite-sized material objects, but no folding takes place for infinitesimal objects. Secondly, since the local degree of folding is positively correlated with the local stretching rate and it is non-uniformly distributed over finite-sized objects, the folding enhances the stretching rate of the finite-sized objects. Thirdly, the stretching of infinitesimal fractions of material objects is governed by the Kolmogorov-scale eddies, whereas the folding of a finite-sized material object is governed by all eddies smaller than the spatial extent of the objects. In other words, the time scale of stretching of infinitesimal fractions of material objects is proportional to the Kolmogorov time, whereas that of folding of sufficiently extended material objects can be as long as the turnover time of the largest eddies. The combination of the short time scale of stretching of infinitesimal fractions and the long time scale of folding of the whole object yields the Reynolds-number dependence. Movies are available with the online version of the paper.


Author(s):  
Bolaji O. Olayiwola ◽  
Gerhard Schaldach ◽  
Peter Walzel

Heat transfer enhancement by pulsating flow in a zigzag channel has been numerically studied using a commercial CFD software for the ranges of laminar flow 0 < Re < 550. The influence of inclination angle α of the zigzag channel and oscillation parameters is investigated. The amplitude of the pulsatile flow was varied between 0.5 mm and 4 mm. The frequency f ranges between 0.5 Hz and 5.5 Hz. For steady flow, fluid mixing is promoted by self induced fluctuation due to the instability of the flow. The Reynolds number Re for the occurrence of significant eddy decreases with increase of the inclination angle of the channel. Superposition of oscillation additionally promotes further fluid mixing by the propagation of different scales of vortices. In comparison to straight channels, significant heat transfer in the laminar regime is possible using a zigzag channel with inclination angle greater than 15°. Further intensification of the heat transfer is possible with superposition of oscillation on the main flow through the channel. However, the heat transfer enhancement due to imposed oscillation is found to increase with decreasing Reynolds number. The effect of the imposed oscillation yields heat transfer enhancement E of up to 1.41 when compared with steady flow in zigzag channel at Reynolds number Re = 107, frequency f = 2.17 Hz and oscillation amplitude A = 1mm using a zigzag channel with an inclination angle α = 15°. Further heat transfer enhancement E of up to 1.80 at the same flow and oscillation conditions is possible with a zigzag channel having inclination angle α = 45°. The influence of oscillation frequency on the heat transfer enhancement E becomes significant as soon as the Womersley number W > 41.32. The effect of superposition of oscillation is not significant using a zigzag channel with inclination angle α = 60°. When the oscillation amplitude is increased up to 4 mm at Reynolds number Re = 107, frequency f = 2.17 Hz and inclination angle α = 45°, the heat transfer enhancement E of about 3.3 is obtained.


2017 ◽  
Vol 56 (4) ◽  
pp. 191-199
Author(s):  
Vaidas Juknevičius ◽  
Jogundas Armaitis

Motivated by recent experimental and computational results concerning a three-dimensional structure of vortices behind a vortex shedding flow meter [M. Reik et al., Forsch. Ingenieurwes. 74, 77 (2010)], we study the Strouhal–Reynolds number dependence in the vortex street in two dimensions behind a trapezoid-shaped object by employing two types of Frisch–Hasslacher–Pomeau (FHP) models. Our geometry is intended to reproduce the operation of a vortex shedding flow meter in a two-dimensional setting, thus preventing the formation of a three-dimensional vortex structure. In particular, we check if the anomalous Reynolds–Strouhal number dependence reported for three dimensions can also be found in our two-dimensional simulation. As we find that the Strouhal number is nearly independent of the Reynolds number in this particular setup, our results provide support for the hypothesis that three-dimensional flow structures are responsible for that dependence, thus hinting at the importance of the pipe diameter to the accurate operation of industrial vortex flow meters.


1990 ◽  
Vol 112 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Chain-Nan Yung ◽  
Kenneth J. De Witt ◽  
Theo G. Keith

Steady flow of an incompressible, Newtonian fluid through a symmetric bifurcated rigid channel was numerically analyzed by solving the three-dimensional Navier-Stokes equations. The upstream Reynolds number ranged from 100 to 1500. The bifurcation was symmetrical with a branch angle of 60 deg and the area ratio of the daughter to the mother vessel was 2.0. The numerical procedure utilized a coordinate transformation and a control volume approach to discretize the equations to finite difference form and incorporated the SIMPLE algorithm in performing the calculation. The predicted velocity pattern was in qualitative agreement with experimental measurements available in the literature. The results also showed the effect of secondary flow which can not be predicted using previous two-dimensional simulations. A region of reversed flow was observed near the outer wall of the branch except for the case of the lowest Reynolds number. Particle trajectory was examined and it was found that no fluid particles remained within the recirculation zone. The shear stress was calculated on both the inner and the outer wall of the branch. The largest wall shear stress, located in the vicinity of the apex of the branch, was of the same order of magnitude as the level that can cause damage to the vessel wall as reported in a recent study.


2016 ◽  
Vol 792 ◽  
pp. 50-66 ◽  
Author(s):  
Anirudh Rao ◽  
Mark C. Thompson ◽  
Kerry Hourigan

Linear stability analysis of a wide range of two-dimensional and axisymmetric bluff-body wakes shows that the first three-dimensional mode to became unstable is always mode E. From the studies presented in this paper, it is speculated to be the universal primary 3D instability, irrespective of the flow configuration. However, since it is a transition from a steady two-dimensional flow, whether this mode can be observed in practice does depend on the nature of the flow set-up. For example, the mode E transition of a circular cylinder wake occurs at a Reynolds number of $\mathit{Re}\simeq 96$, which is considerably higher than the steady to unsteady Hopf bifurcation at $\mathit{Re}\simeq 46$ leading to Bénard–von-Kármán shedding. On the other hand, if the absolute instability responsible for the latter transition is suppressed, by rotating the cylinder or moving it towards a wall, then mode E may become the first transition of the steady flow. A well-known example is flow over a backward-facing step, where this instability is the first global instability to be manifested on the otherwise two-dimensional steady flow. Many other examples are considered in this paper. Exploring this further, a structural stability analysis (Pralits et al.J. Fluid Mech., vol. 730, 2013, pp. 5–18) was conducted for the subset of flows past a rotating cylinder as the rotation rate was varied. For the non-rotating or slowly rotating case, this indicated that the growth rate of the instability mode was sensitive to forcing between the recirculation lobes, while for the rapidly rotating case, it confirmed sensitivity near the cylinder and towards the hyperbolic point. For the non-rotating case, the perturbation, adjoint and structural stability fields, together with the wavelength selection, show some similarities with those of a Crow instability of a counter-rotating vortex pair, at least within the recirculation zones. On the other hand, at much higher rotation rates, Pralits et al. (J. Fluid Mech., vol. 730, 2013, pp. 5–18) have suggested that hyperbolic instability may play a role. However, both instabilities lie on the same continuous solution branch in Reynolds number/rotation-rate parameter space. The results suggest that this particular flow transition at least, and probably others, may have a number of different physical mechanisms supporting their development.


1999 ◽  
Vol 1 ◽  
pp. S86-S86
Author(s):  
R DESIMONE ◽  
G GLOMBITZA ◽  
C VAHL ◽  
H MEINZER ◽  
S HAGL

Sign in / Sign up

Export Citation Format

Share Document