Lithuanian Journal of Physics
Latest Publications


TOTAL DOCUMENTS

744
(FIVE YEARS 74)

H-INDEX

15
(FIVE YEARS 2)

Published By Lithuanian Academy Of Sciences

1648-8504, 1648-8504

2021 ◽  
Vol 61 (3) ◽  
Author(s):  
A. Kravtsov ◽  
J. Virbulis ◽  
A. Krauze

A new series of experiments was conducted to determine the source of impurities in the process of silicon crystal growth with electron beam heating. A gas-dynamic window was placed between the electron gun and growth chamber. Also positively-charged traps were placed along the crucible to reduce the number of electrons hitting the chamber and the crucible. Five experiments were conducted: two with the window, two with charge traps, and one with both the window and charge traps. The analysis of obtained samples showed that the gas-dynamic window decreases the content of Al, Cu, Fe, Cr and O2, and the trap, used in the experiments, decreases the content of Fe, Cr and Cu in residues of the melt. The content of all impurities, except Al, is close to the goal level. Al impurities come only from the gun, but the gas-dynamic window cannot eliminate them completely. It seems that Al impurities come either as neutral atoms carried by the gas or as positively charged ions. To reduce these impurities, a separation of the Al flow from the beam by the magnetic field is proposed.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
J. Pauraitė ◽  
I. Garbarienė ◽  
A. Minderytė ◽  
V. Dudoitis ◽  
G. Mainelis ◽  
...  

Open biomass burning (OBB) is a significant air pollution source, but it is still not clear to what extent OBB events affect indoor air quality [1]. Outdoor and indoor measurements of submicron particulate matter (PM1) were conducted on 25–29 April (2019) in the capital city Vilnius (Lithuania). Fires from neighbouring countries (Belarus, Ukraine and Russia) and in the vicinity of Vilnius broke out during the measurement campaign. The temporal evolution and transport of OBB plume were investigated by combining the air mass backward trajectory analysis and fire satellite observation (MODIS) database. Measurements of the PM1 chemical composition in real-time were performed using an aerosol chemical speciation monitor (ACSM) and an aethalometer. Organic matter was the clearly dominant component, accounting for >70%, in both indoor and outdoor PM1. The air filtering system of the office building removed approximately up to 55% of PM1. Despite a significantly lower PM1 pollution level in the office, highly acidic indoor PM1 could have harmful effects on the human health. Source apportionment of particulate carbonaceous matter revealed a significant importance of OBB-related particles (average 56%) to indoor air.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
D. Kulmatova ◽  
M. Baitimirova ◽  
U. Malinovskis ◽  
C.-F. Chang ◽  
Y. Gu ◽  
...  

We examine the influence of colloidal Au and Ag nanoparticles (NP) on hydrothermally grown ZnO nanorods (NR). Individual 60 nm diameter NP and small NP assemblies without formation of large aggregates were deposited on poly-L-lysine covered NR films using the dip-coating method. The evaluation of morphological and optical properties of the obtained ZnO-metal hybrids was done using scanning electron microscopy, photoluminescence (PL) and diffuse reflection spectroscopy. The presence of Au NP selectively suppressed the PL components near 560 nm wavelength associated with ZnO surface defects, whereas equally sized Ag NP resulted in a much smaller change of PL signal, barely above the noise level. The presented results may be useful for tuning the optical properties of hybrid materials in development of sensor or photovoltaic devices.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
K. Shunkeyev ◽  
Zh. Ubaev ◽  
A. Lushchik ◽  
L. Myasnikova

The processes of radiation defect creation and radiative relaxation of electronic excitations under applied local or/and uniaxial elastic deformation have been studied in NaCl crystals by means of optical absorption, luminescence and thermoactivation spectroscopy methods. In NaCl:Li at 80 K, X-ray-induced absorption bands peaked around 3.35 and 4.6 eV have been detected and ascribed to interstitial halide atoms located nearby Li impurity cations, HA(Li) centres. Subsequent thermal annealing of HA(Li) centres leads to the formation of polyhalide centres responsible for the absorption band at 5.35 eV. In an X-irradiated and stressed NaCl:Li crystal (degree of uniaxial elastic deformation of ε = 0.9%), the peak of thermally stimulated luminescence at ~115 K is composed of the ~2.7-eV emission appearing, in our opinion, due to the recombination of the electron, thermally released from an F′ centre, with a hole-type HA(Li) centre. The applied uniaxial elastic stress facilitates the self-trapping of anion excitons in regular regions of a NaCl lattice and impedes the energy transfer by mobile excitons to impurities/defects and, in turn, attenuates the Br-related luminescence peaked at 3.95 eV with respect to the π-emission of self-trapped excitons (~3.35 eV). The 3.95 eV emission has been detected in a natural NaCl crystal containing homologous Br impurity ions.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
T.G. Akopdzhanyan ◽  
A.A. Kondakov ◽  
S.I. Rupasov ◽  
A.P. Kozlova ◽  
V. Pankratov

The synthesis method of aluminium oxynitride (AlON) powders by nitriding of Al/Al2O3 mixture under highpressure nitrogen is proposed. The novelty of this method consists in adding KClO4 or Mg(ClO4)2 and extra Al into the starting mixture (Al+Al2O3) to cause the exothermal aluminium oxidation reaction, which therefore initiates the aluminium nitriding reaction. The microstructure and phase composition of the AlON powders obtained by self-propagating high-temperature synthesis are demonstrated by means of SEM and XRD analysis. Diffuse reflection spectra of AlON powders have been measured and the values of band-gap energy have been calculated. Optical transmission and reflection characteristics of the AlON ceramic samples sintered from AlON powders at 1930°C have been studied. The influence of the technological parameters of ceramics production on their transparency is revealed – the most transparent sample is obtained from the powders synthesized with the Mg(ClO4)2 additive and sintered for 6 h.


2021 ◽  
Vol 61 (3) ◽  
Author(s):  
K. Surovovs ◽  
A. Kravtsov ◽  
J. Virbulis

The pedestal method is an alternative to the well-known floating zone method, both of which are performed with high-frequency electromagnetic heating. Unlike the floating zone method, in the pedestal method a single crystal is pulled upwards from the melt. It allows one to lower feed rod quality requirements and simplify the process control due to the absence of open melting front. As the pedestal method has not been widely used in industry for silicon crystals, its development requires extensive numerical modelling. The present work describes application of the previously created mathematical model for crystals with diameters higher than it is currently possible in the experimental setup, as well as for the cone growth phase. Supplementary free surface heating, that prevents melt centre freezing during the seeding phase, has been added at the beginning of cone phase. After multiple sets of simulations, an optimal scheme of heating control for cone growth was proposed.


2021 ◽  
Vol 61 (2) ◽  
Author(s):  
J.V. Vaitkus ◽  
A. Mekys ◽  
Š. Vaitekonis

An increase of neutron irradiation fluence caused a decrease of Si radiation detector efficiency that was exceptionally well seen at 1017 neutron/cm2 fluence when the observed I–V characteristic of p-n junction under forward bias and under reverse bias became similar. Therefore the investigation of free carrier mobility could be a key experiment to understand the change of heavily irradiated silicon. The electron mobility was investigated by magnetoresistance means in microstrip silicon samples at temperature range T = 200–276 K. The analysis included the free carrier scattering by phonons, ionized impurities, dipoles and clusters and a contribution of each process was found by fitting the mobility dependence on temperature. The analysis of experimental data clearly demonstrated that the applied model did not explain the mobility in the samples irradiated to the highest fluence. Therefore a new concept of carrier transport is needed, and, as a conclusion, it could be stated that Si irradiated above 1016 cm–2 fluence (and up to 1020 cm–2) is a disordered material with the clusters.


2021 ◽  
Vol 61 (2) ◽  
Author(s):  
L. Deveikis ◽  
J.V. Vaitkus ◽  
T. Čeponis ◽  
M. Gaspariūnas ◽  
V. Kovalevskij ◽  
...  

Profiling of particle beams is one of the most important diagnostic procedures for operating any kind of accelerator. In this work, the proton beam profilers, based on fluence measurements performed by recording the changes of carrier lifetime in Si material and scintillation intensity of thin GaN layers, caused by radiation induced defects and emission centres, are presented. The beams of penetrative (26 GeV/c) and stopped (1.6 MeV) protons have been examined. It is shown that the penetrative particle regime should be employed to appropriately record 2D fluence distribution profiles. It is also illustrated that the presented profiling techniques can be applied for scanning of other charged (namely, pions) and neutral (neutrons) particle beams.


2021 ◽  
Vol 61 (2) ◽  
Author(s):  
E. Dudutienė ◽  
A. Jasinskas ◽  
B. Čechavičius ◽  
R. Nedzinskas ◽  
M. Jokubauskaitė ◽  
...  

A set of single quantum well (SQW) samples of GaAs1-xBix with x ~ 0.1 and p-doped GaAs barriers grown by molecular beam epitaxy was investigated by the temperature-dependent photoluminescence (PL) spectroscopy. Those GaAsBi SQW structures showed a high crystalline quality, a smooth surface and sharp interfaces between the layers and exhibited a high PL intensity and a lower than 100 meV PL linewidth of QW structures. Temperature dependence of the optical transition energy was S-shape-free for all investigated structures and it was weaker than that of GaAs. An analysis of the carrier recombination mechanism was also carried out indicating that the radiative recombination is dominant even at room temperature. Moreover, numerical calculations revealed that a higher Be doping concentration leads to an increased overlap of the electron and heavy hole wave functions and determines a higher PL intensity.


2021 ◽  
Vol 61 (2) ◽  
Author(s):  
Y. Braver ◽  
L. Valkunas ◽  
A. Gelzinis

Numerical simulations of stationary fluorescence spectra of molecular systems usually rely on the relation between the photon emission rate and the system’s dipole–dipole correlation function. However, research papers usually take this relation for granted, and standard textbook expositions of the theory of fluorescence spectra also tend to leave out this important relation. In order to help researchers with less theoretical training gain a deeper understanding of the emission process, we perform a step-by-step derivation of the expression for the fluorescence spectrum, focusing on rigorous mathematical treatment and the underlying physical content. Right from the start, we employ quantum description of the electromagnetic field, which provides a clear picture of emission that goes beyond the phenomenological treatment in terms of the Einstein A coefficient. Having obtained the final expression, we discuss the relation of the latter to the present level of theory by studying a simple two-level system. From the technical perspective, the present work also aims at familiarizing the reader with the density matrix formalism and with the application of the double-sided Feynman diagrams.


Sign in / Sign up

Export Citation Format

Share Document