Three-Dimensional Steady Flow Through A Bifurcation

1990 ◽  
Vol 112 (2) ◽  
pp. 189-197 ◽  
Author(s):  
Chain-Nan Yung ◽  
Kenneth J. De Witt ◽  
Theo G. Keith

Steady flow of an incompressible, Newtonian fluid through a symmetric bifurcated rigid channel was numerically analyzed by solving the three-dimensional Navier-Stokes equations. The upstream Reynolds number ranged from 100 to 1500. The bifurcation was symmetrical with a branch angle of 60 deg and the area ratio of the daughter to the mother vessel was 2.0. The numerical procedure utilized a coordinate transformation and a control volume approach to discretize the equations to finite difference form and incorporated the SIMPLE algorithm in performing the calculation. The predicted velocity pattern was in qualitative agreement with experimental measurements available in the literature. The results also showed the effect of secondary flow which can not be predicted using previous two-dimensional simulations. A region of reversed flow was observed near the outer wall of the branch except for the case of the lowest Reynolds number. Particle trajectory was examined and it was found that no fluid particles remained within the recirculation zone. The shear stress was calculated on both the inner and the outer wall of the branch. The largest wall shear stress, located in the vicinity of the apex of the branch, was of the same order of magnitude as the level that can cause damage to the vessel wall as reported in a recent study.

2013 ◽  
Vol 10 (05) ◽  
pp. 1350031 ◽  
Author(s):  
ALIREZA ARAB SOLGHAR ◽  
S. A. GANDJALIKHAN NASSAB

The three-dimensional steady state thermohydrodynamic (THD) analysis of an axial grooved oil journal bearing is obtained theoretically. Navier–Stokes equations are solved simultaneously along with turbulent kinetic energy and its dissipation rate equations coupled with the energy equation in the lubricant flow and the heat conduction equation in the bush. The AKN low-Re κ–ε turbulence model is used to simulate the mean turbulent flow field. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid and the governing equations are transformed into the computational domain. Discretized forms of the transformed equations are obtained by the control volume method and solved by the SIMPLE algorithm. The numerical results of this analysis can be used to investigate the pressure distribution, volumetric oil flow rate and the loci of shaft in the journal bearings. To validate the computational results, comparison with the experimental and theoretical data of other investigators is made, and reasonable agreement is found.


2003 ◽  
pp. 55-82
Author(s):  
M. Despotovic ◽  
Milun Babic ◽  
D. Milovanovic ◽  
Vanja Sustersic

This paper describes a three-dimensional compressible Navier-Stokes code, which has been developed for analysis of turbocompressor blade rows and other internal flows. Despite numerous numerical techniques and statement that Computational Fluid Dynamics has reached state of the art, issues related to successful simulations represent valuable database of how particular tech?nique behave for a specifie problem. This paper deals with rapid numerical method accurate enough to be used as a design tool. The mathematical model is based on System of Favre averaged Navier-Stokes equations that are written in relative frame of reference, which rotates with constant angular velocity around axis of rotation. The governing equations are solved using finite vol?ume method applied on structured grids. The numerical procedure is based on the explicit multistage Runge-Kutta scheme that is coupled with modem numerical procedures for convergence acceleration. To demonstrate the accuracy of the described numer?ical method developed software is applied to numerical analysis of flow through impeller of axial turbocompressor, and obtained results are compared with available experimental data.


2021 ◽  
Vol 930 ◽  
Author(s):  
Kartik P. Iyer ◽  
Katepalli R. Sreenivasan ◽  
P.K. Yeung

Using direct numerical simulations performed on periodic cubes of various sizes, the largest being $8192^3$ , we examine the nonlinear advection term in the Navier–Stokes equations generating fully developed turbulence. We find significant dissipation even in flow regions where nonlinearity is locally absent. With increasing Reynolds number, the Navier–Stokes dynamics amplifies the nonlinearity in a global sense. This nonlinear amplification with increasing Reynolds number renders the vortex stretching mechanism more intermittent, with the global suppression of nonlinearity, reported previously, restricted to low Reynolds numbers. In regions where vortex stretching is absent, the angle and the ratio between the convective vorticity and solenoidal advection in three-dimensional isotropic turbulence are statistically similar to those in the two-dimensional case, despite the fundamental differences between them.


1987 ◽  
Vol 109 (4) ◽  
pp. 345-352 ◽  
Author(s):  
M. Reggio ◽  
R. Camarero

A numerical procedure to solve three-dimensional incompressible flows in arbitrary shapes is presented. The conservative form of the primitive-variable formulation of the time-dependent Navier-Stokes equations written for a general curvilinear coordiante system is adopted. The numerical scheme is based on an overlapping grid combined with opposed differencing for mass and pressure gradients. The pressure and the velocity components are stored at the same location: the center of the computational cell which is used for both mass and the momentum balance. The resulting scheme is stable and no oscillations in the velocity or pressure fields are detected. The method is applied to test cases of ducting and the results are compared with experimental and numerical data.


Author(s):  
Mou-jin Zhang ◽  
Chuan-gang Gu ◽  
Yong-miao Miao

The complex three-dimensional flow field in a centrifugal impeller with low speed is studied in this paper. Coupled with high–Reynolds–number k–ε turbulence model, the fully three–dimensional Reynolds averaged Navier–Stokes equations are solved. The Semi–Implicit Method for Pressure–Linked Equations (SIMPLE) algorithm is used. And the non–staggered grid arrangement is also used. The computed results are compared with the available experimental data. The comparison shows good agreement.


Author(s):  
Man-Woong Heo ◽  
Tae-Wan Seo ◽  
Chung-Suk Lee ◽  
Kwang-Yong Kim

This paper presents a parametric study to investigate the aerodynamic and aeroacoustic characteristics of a side channel regenerative blower. Flow analysis in the side channel blower was carried out by solving three-dimensional steady and unsteady Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence closure. Aeroacoustic analysis was conducted by solving the variational formulation of Lighthill’s analogy on the basis of the aerodynamic sources extracted from the unsteady flow analysis. The height and width of the blade and the angle between inlet and outlet ports were selected as three geometric parameters, and their effects on the aerodynamic and aeroacoustic performances of the blower have been investigated. The results showed that the aerodynamic and aeroacoustic performances were enhanced by decreasing height and width of blade. It was found that angle between inlet and outlet ports significantly influences the aerodynamic and aeroacoustic performances of the blower due to the stripper leakage flow.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Filipe S. Pereira ◽  
Luís Eça ◽  
Guilherme Vaz

The importance of the turbulence closure to the modeling accuracy of the partially-averaged Navier–Stokes equations (PANS) is investigated in prediction of the flow around a circular cylinder at Reynolds number of 3900. A series of PANS calculations at various degrees of physical resolution is conducted using three Reynolds-averaged Navier–Stokes equations (RANS)-based closures: the standard, shear-stress transport (SST), and turbulent/nonturbulent (TNT) k–ω models. The latter is proposed in this work. The results illustrate the dependence of PANS on the closure. At coarse physical resolutions, a narrower range of scales is resolved so that the influence of the closure on the simulations accuracy increases significantly. Among all closures, PANS–TNT achieves the lowest comparison errors. The reduced sensitivity of this closure to freestream turbulence quantities and the absence of auxiliary functions from its governing equations are certainly contributing to this result. It is demonstrated that the use of partial turbulence quantities in such auxiliary functions calibrated for total turbulent (RANS) quantities affects their behavior. On the other hand, the successive increase of physical resolution reduces the relevance of the closure, causing the convergence of the three models toward the same solution. This outcome is achieved once the physical resolution and closure guarantee the precise replication of the spatial development of the key coherent structures of the flow.


2015 ◽  
Vol 772 ◽  
Author(s):  
L. Kahouadji ◽  
N. Périnet ◽  
L. S. Tuckerman ◽  
S. Shin ◽  
J. Chergui ◽  
...  

We report the first simulations of the Faraday instability using the full three-dimensional Navier–Stokes equations in domains much larger than the characteristic wavelength of the pattern. We use a massively parallel code based on a hybrid front-tracking/level-set algorithm for Lagrangian tracking of arbitrarily deformable phase interfaces. Simulations performed in square and cylindrical domains yield complex patterns. In particular, a superlattice-like pattern similar to those of Douady & Fauve (Europhys. Lett., vol. 6, 1988, pp. 221–226) and Douady (J. Fluid Mech., vol. 221, 1990, pp. 383–409) is observed. The pattern consists of the superposition of two square superlattices. We conjecture that such patterns are widespread if the square container is large compared with the critical wavelength. In the cylinder, pentagonal cells near the outer wall allow a square-wave pattern to be accommodated in the centre.


2006 ◽  
Vol 128 (4) ◽  
pp. 573-578 ◽  
Author(s):  
Andrew L. Hazel ◽  
Matthias Heil

Motivated by the physiological problem of pulmonary airway reopening, we study the steady propagation of an air finger into a buckled elastic tube, initially filled with viscous fluid. The system is modeled using geometrically non-linear, Kirchhoff-Love shell theory, coupled to the free-surface Navier-Stokes equations. The resulting three-dimensional, fluid-structure-interaction problem is solved numerically by a fully coupled finite element method. Our study focuses on the effects of fluid inertia, which has been neglected in most previous studies. The importance of inertial forces is characterized by the ratio of the Reynolds and capillary numbers, Re∕Ca, a material parameter. Fluid inertia has a significant effect on the system’s behavior, even at relatively small values of Re∕Ca. In particular, compared to the case of zero Reynolds number, fluid inertia causes a significant increase in the pressure required to drive the air finger at a given speed.


Sign in / Sign up

Export Citation Format

Share Document