A determination of the shear strength parameters of a fine-grained cemented alluvium in the US Desert Southwest

Author(s):  
Eugene Muller ◽  
Edward A. Nowatski ◽  
Jay S. DeNatale
2015 ◽  
Vol 744-746 ◽  
pp. 695-701
Author(s):  
Giang Nguyen ◽  
Eva Hrubesova ◽  
Jan Maršálek ◽  
Tomáš Petřík ◽  
Marek Mohyla

In geotechnical practice we often meet the case when soils need to be improved. Various methods for the ground improvement are used in the geotechnical practise. One from methods of soils improvements can use also fiber-shaped waste materials. Such as polyethylene terephthalate (PET) plastic bottles are profusely and widely produced, yet used little for engineering purpose, and the overwhelming majority of them are placed in storage or disposal sites.One form expected improvements is increase of soil shear strength parameters which can be obtained by various methods, including laboratory tests. Determination of soil shear strength parameters by DST is still extensively used. In this paper we will deal with soil shear strength parameters of soil without and with plastic chips and their uncertainty. Uncertainties of shear strength parameters of soil without or with plastic chips are not negligible.


2021 ◽  
Author(s):  
Houman Soleimani-Fard ◽  
Diethard König ◽  
Meisam Goudarzy

AbstractDiscrete randomly distributed fibers are commonly used to improve the engineering characteristics of the soil and thus soil properties such as shear strength, compressibility, density, and hydraulic conductivity. Most studies have so far focused on describing the behavior of soils containing randomly distributed fibers under dried or saturated conditions. However, the water table may seasonally fluctuate, thus generating unsaturated soil conditions. Therefore, a better understanding of the hydro-mechanical properties of unsaturated improved soils is of high necessity. In this research, the shear strength parameters of fine-grained soils were evaluated using the biaxial device available at Ruhr Universität Bochum. The applied device was modified to test unsaturated fine-grained soils with various degrees of saturation using axis translation and vapor equilibrium techniques. The experiments were conducted on fine soils containing 0, 0.5, and 1% fiber contents under a wide range of matric suctions. The ductile behavior was more noticeable in samples with lower suctions and higher straw contents. Furthermore, the shear strength of both unreinforced and reinforced fine-grained soils considerably increased by an increase in the suction. Finally, shear band inclination increased by the suction while decreasing by straw content.


Sign in / Sign up

Export Citation Format

Share Document